精英家教网 > 初中数学 > 题目详情

【题目】(1)如图1,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?

(2)如图2,若AB∥CD,又能得到什么结论?请直接写出结论.

【答案】(1) ∠E+∠G=∠B+∠F+∠D;

(2) ∠B+∠F1+∠F2+…+∠Fn-1+∠D=∠E1+∠E2+…+∠En.

【解析】

(1)过点EEMAB,过点FFNAB,过点GGHCD,根据平行线的性质可得答案;

(2) 根据平行线的性质易得:∠B+∠F1+∠F2+…+∠Fn-1+∠D=∠E1+∠E2+…+∠En.

解:(1)过点EEM∥AB,过点FFN∥AB,过点GGH∥CD.

∵AB∥CD.

∴AB∥EM∥FN∥GH∥CD.

∴∠1=∠B,∠2=∠3,∠4=∠5,∠6=∠D.

∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D,

即∠BEF+,∠FGD=∠B+∠EFG+∠D.

(2)∠B+∠F1+∠F2+…+∠Fn-1+∠D=∠E1+∠E2+…+∠En.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE= ∠A.
(1)求证:BC是⊙O的切线;
(2)若sinB= ,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD,EF相交于点O,OG是∠AOF的平分线,∠BOD=35°,COE=18°,则∠COG的度数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足+|2b+12|+(c﹣4)2=0.

(1)求B、C两点的坐标;

(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;

(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的?直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)3a3b(-2ab)+(-3a2b)2

(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2

(3) +(2018-)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点A坐标是,则经过第2019次变换后所得的A点坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABN△ACM位置如图所示,AB=ACAD=AE∠1=∠2

1)求证:BD=CE

2)求证:∠M=∠N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在长方形ABCD中,点EAD的中点,连结BE,将ABE沿着BE翻折得到FBEEFBC于点H,延长BFDC相交于点G,若DG=16,BC=24,则AB=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图中∠1与∠2,3与∠4分别是哪两条直线被哪一条直线所截而成的?是什么角?

查看答案和解析>>

同步练习册答案