【题目】学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.
(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)
【答案】(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为.
【解析】
(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.
(1)被调查的总人数为25÷50%=50人;
则步行的人数为50﹣25﹣15=10人;
如图所示条形图,
“骑车”部分所对应的圆心角的度数=×360°=108°;
(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,
则有AB、AC、AD、BC、BD、CD这6种等可能的情况,
其中2人都是“喜欢乘车”的学生有3种结果,
所以2人都是“喜欢乘车”的学生的概率为.
科目:初中数学 来源: 题型:
【题目】去年冬天,我市遭遇大雪,为确保道路正常通行,市政府启用了铲雪车清理道路,已知一台铲雪车的工作效率相当于一名环卫工人的倍,一台铲雪车清理立方米的积雪,要比名环卫工人清理这些积雪少用小时.
(1)求一台铲雪车每小时清雪多少立方米?
(2)现有一项清理任务,要求不超过小时完成立方米的积需清理,市政府调配了台铲雪车和名环卫工人,工作了小时后,又调配了一些铲雪车进行支援,则市政府至少又调配了几台铲雪车才能完成任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需464元.
(1)问足球和篮球的单价各是多少元?
(2)若购买足球和篮球共20个,且购买篮球的个数不超过足球个数的2倍,购买球的总费用不超过1910元,问该学校有哪几种不同的购买方案?哪种方案最省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P。
(1)求证:DE=DF
(2)若;①求:的值;②求证:四边形HGAP为平行四边形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:
甲 | 乙 | 丙 | 丁 | |
(环) | 8.4 | 8.6 | 8.6 | 7.6 |
S2 | 0.74 | 0.56 | 0.94 | 1.92 |
如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( )
A.甲 B.乙 C.丙 D.丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点G是线段AB上一点,连接CG、DG,满足CG=CD.
(1)如图1,过点G作GH⊥CD于点H,若AB=7,GH=2,求DG;
(2)如图2,若∠DAB=60°,∠DAB的角平分线交CD于点E,过点E作EF∥AD,满足EF+AG=AD,连接DF、CF,求证:∠DCF=∠GCF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(x>0,m≠0)的图象交于点C,与x轴、y轴分别交于点D、B,已知OB=3,点C的横坐标为4,cos∠0BD=
(1)求一次函数及反比例函数的表达式;
(2)将一次函数图象向下平移,使其经过原点O,与反比例函数图象在第四象限内的交点为A,连接AC,求四边形OACB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com