精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点AC分别在x轴,y轴上,反比例函数的图象与正方形的两边ABBC分别交于点MNNDx轴,垂足为D,连接OMONMN.下列结论:①△OCN≌△OAMONMN③四边形DAMN与△MON面积相等;④若∠MON45°MN2,则点C的坐标为(0 1)其中正确结论的序号是____________

【答案】①③④

【解析】试题解析:设反比例函数的解析式为:

∵点MN都在的图象上,

∵四边形ABCO为正方形,

NC=AM

∴△OCN≌△OAM∴①正确;

∵△OCN≌△OAMON=OM

k的值不能确定,

∴∠MON的值不能确定,

∴△ONM只能为等腰三角形,不能确定为等边三角形,

ONMN

∴②错误;

SOND+S四边形DAMN=SOAM+SOMN

∴四边形DAMN与△MON面积相等,

∴③正确;

NEOME点,如图所示:

∴△ONE为等腰直角三角形,

NE=OE

NE=x,

RtNEM中,MN=2

CN=AMCB=AB

BN=BM

∴△BMN为等腰直角三角形,

设正方形ABCO的边长为a,

RtOCN,

解得 (舍去)

C点坐标为

∴④正确.

故答案为:①③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,,照此规律排列下去,则第8个图中小正方形的个数是(  )

A. 48B. 63C. 80D. 99

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.

(1)求A,B两种型号的机器人每小时分别搬运多少材料;

(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,点(0,1),点(1,0),正方形的两条对角线的交点为,延长至点,使.延长至点,使,以为邻边做正方形

(Ⅰ)如图①,求的长及的值;

(Ⅱ)如图②,正方形固定,将正方形绕点逆时针旋转,得正方形,记旋转角为(0°<<360°),连接

旋转过程中,当90°时,求的大小;

②在旋转过程中,求的长取最大值时,点的坐标及此时的大小(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线

若抛物线的顶点为(-2,-4),抛物线经过点(-40).

①求该抛物线的解析式;

②连接,把所在直线沿轴向上平移,使它经过原点,得到直线,点是直线上一动点.

设以点 为顶点的四边形的面积为,点的横坐标为,当时,求的取值范围;

0 1,当时, ,当0时, 0,试比较1的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,P是对角线AC上一点(不与点AC重合),连接PD,过点PPEPD交射线BC于点E

1)如图1,求证:PDPE

2)若正方形ABCD的边长为4,求CE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y()和通电时间x(min)之间的关系如图所示,回答下列问题:

(1)分别求出当0x88xa时,yx之间的函数关系式;

(2)求出图中a的值;

(3)李老师这天早上730将饮水机电源打开,若他想在810上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,直线y=﹣x+12x轴,y轴分别相交于点A,B,ABO的平分线与x轴相交于点C.

(1)如图1,求点C的坐标;

(2)如图2,点D,E,F分别在线段BC,AB,OB上(点D,E,F都不与点B重合),连接DE,DF,EF,且∠EDF+∠OBC=90°,求证:∠FED=AED;

(3)如图3,在(2)的条件下,延长线段FEx轴相交于点G,连接DG,若∠CGD=FGD,BF:BE=5:8,求直线DF的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点O为坐标原点,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),直线经过B、C两点.

(1)求抛物线的解析式;

(2)点P是x轴下方抛物线上一点,连接AC,过点P作PQ∥AC交BC于点Q,过点Q作x轴的平行线,过点P作y轴的平行线,两条直线相交于点K,PK交BC于点H,设QK的长为t,PH的长为d,求d与t之间的函数关系式;(不要求写出自变量t的取值范围)

(3)在(2)的条件下,PK交x轴于点R,过点R作RT⊥PQ,垂足为T,当PK=PT时,将线段QT绕点Q逆时针旋转90得到线段QL,M是线段PQ上一动点,过点M作直线AC的垂线,垂足为N,连接ON、ML,当ML∥ON时,求N点坐标.

查看答案和解析>>

同步练习册答案