【题目】如图,AD是⊙O的直径,AD=12,点B、C在⊙O上,AB、DC的延长线交于点E,且CB=CE,∠BCE=70°.
有以下结论:①∠ADE=∠E;②劣弧的长为;③点C为的中点;④BD平分∠ADE.以上结论一定正确的是_________________.(把正确结论的序号都填上)
【答案】①②③
【解析】分析:①根据内接四边形的对角互补得到∠CBE=∠ADE,根据等腰三角形的性质得到∠CBE=∠E,即可证明.
②求出圆心角的度数,根据弧长公式求解即可.
③证明∠DAC=∠EAC,即可证明.
④∠A≠∠E,BD不平分∠ADE.
详解:①∠CBE为圆内接四边形ABCD的外角,则∠CBE=∠ADE,
CB=CE,所以∠CBE=∠E,因此∠ADE=∠E.
②∠A=∠BCE=70°,∴∠AOB=40°,的长=
③由题意知:AC⊥DE,由∠ADE=∠E得AD=AE,
∴∠DAC=∠EAC,∴点C为的中点.
④DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE. 正确结论①②③
故答案为:①②③.
点睛:属于圆的综合题,考查圆内接四边形的性质,圆周角定理,弧长公式等,考查知识点较多,对学生综合分析能力要求较高.
【题型】填空题
【结束】
15
【题目】计算:.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学在,两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是元,且随身听的单价比书包的单价的倍少元.
(1)求该同学看中的随身听和书包的单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市所有商品打八五折销售,超市全场购物每满元返购物券元销售(不足元不返券,购物券全场通用),但他只带了元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是某水文站在雨季对某条河一周内水位变化情况的记录(上升为正,下降为负)
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
水位变化/ | +0.2 | +0.3 | -0.4 | -0.4 | -0.1 | +0.2 | +0.4 |
注:①表中记录的数据为每天中午12时的水位与前一天12时水位的变化量;②上星期日12时的水位高度为.
(1)请你通过计算说明本周日与上周日相比,水位是上升了还是下降了;
(2)用折线连接本周每天的水位,并根据折线说明水位在本周内的升降趋势.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.
(1)试说明△CEF是等腰三角形.
(2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形,则阴影部分面积是( )
A.12B.10C.8D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有如下说法:①直线是一个平角;②如果线段AB=BC,则B是线段AC的中点;③射线AB与射线BA表示同一射线;④用一个扩大2倍的放大镜去看一个角,这个角扩大2倍;⑤两点之间,直线最短;⑥120.5°=120°30′,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com