【题目】2017年金卉庄园“新春祈福灯会”前夕,我市某工艺厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价 (元/件) | ... | 30 | 40 | 50 | 60 | ... |
每天销售量 (件) | ... | 200 | 180 | 160 | 140 | ... |
(1)已知上表数据满足以下三个函数模型中的一个:①;②;③为常数, 中,请你求出与的函数关系式(不必写自变量的范围);
(2)求工艺厂试销该工艺品每天获得的利润与的函数关系式,并求当销售单价为多少时,每天获得的利润最大?最大利润是多少?
(3)孝感市物价部门规定,该工艺品销售单价最高不能超过72元/件,那么销售单价定为多少时,工艺厂试销工艺品每天获得的利润最大?
【答案】(1);(2)当销售单价75元/件时,每天获得的利润最大;最大利润是6050元(3)销售单价定为72元/件时,工艺厂试销工艺品每天获得的利润最大
【解析】试题分析:(1)观察表中x、y的各组对应值,可以发现y随着x的均匀增大而均匀减小,因此可以确定函数关系式为一次函数,由此即可得;
(2)根据利润=销售总价-成本总价,由(1)中函数关系式得出,进而利用二次函数最值求法得出即可;
(3)利用二次函数的增减性,结合对称轴即可得出答案.
试题解析:(1)观察表格中的数据可以发现y随着x的均匀增大而均匀减小,因此可以确定函数关系式为一次函数,
将(30,200)、(40,180)分别代入y=kx+b,得: ,解得: ,
所以;
(2)依题意可知: ,
, 有最大值,
当时, 元,
当销售单价75元/件时,每天获得的利润最大;最大利润是6050元;
(3)由(2)中易知, 与的函数图象是一个开口向下的抛物线,所以在对称轴直线的左侧, 随的增大而增大,
x≤72, 当时, w才能最大,
销售单价定为72元/件时,工艺厂试销工艺品每天获得的利润最大.
科目:初中数学 来源: 题型:
【题目】如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:
(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,为边上的一点,,动点从点出发,以每秒1个单位的速度沿着边向终点运动,连接.设点运动的时间为秒.
(1)求的长;
(2)当为多少秒时,是直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AD边的中点.
(1)用直尺和圆规作⊙O,使⊙O 经过B、C、E三点;(要求:尺规作图,保留作图痕迹,不写作法);
(2)若正方形的边长为4,求(1)中所作⊙O的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴交于A(4,0),B(6,0)两点,与轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<3).
①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,△PDE的面积最大,并求出这个最大值;
②当t =2时,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请你求出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系 ;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:
(1)这次被抽查的学生有 人;请补全条形统计图;
(2)在统计图2中,“乒乓球”对应扇形的圆心角是 度;
(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com