精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,∠C90°,ACBC,将△ABC绕点A顺时针方向旋转60°到△ABC的位置,连接C'B

(1)求∠ABC'的度数;

(2)C'B的长.

【答案】(1)ABC'30°;(2)CB1.

【解析】

1)如图,连接BB′,延长BC′AB′于点M;证明ABC′≌△B′BC′,得到∠MBB′=MBA=30°;(2)求出BMC′M的长,即可解决问题.

解:(1)如图,连接BB′,延长BC′交AB′于点M

由题意得:∠BAB′=60°,BABA

∴△ABB′为等边三角形,

∴∠ABB′=60°,ABBB

在△ABC′与△BBC′中,

∴△ABC′≌△BBC(SSS)

∴∠MBB′=∠MBA30°,

即∠ABC'30°;

(2)∵∠MBB′=∠MBA

BMAB′,且AMBM

由题意得:AB24

AB′=AB2AM1

CMAB′=1;由勾股定理可求:BM

CB1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司经销一种商品,每件商品的成本为元,经市场调查发现,在一段时间内,销售量(件)随销售单价(元/件)的变化而变化,具体关系式为,设这种商品在这段时间内的销售利润为(元),解答如下问题:

1)求之间的函数表达式;

2)当取何值时,的值最大?

3)如果物价部门规定这种商品的销售单价不得高于/件,公司想要在这段时间内获得元的销售利润,那么销售单价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x-元二次方程-x2+mx-t=0 (t为实数)l<x<3的范围内有解,则t的取值范围是( )

A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实精准扶贫精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格(元/公斤)与第天之间满足为正整数),销售量(公斤)与第天之间的函数关系如图所示:

如果李大爷的草莓在上市销售期间每天的维护费用为80元.

1)求销售量与第天之间的函数关系式;

2)求在草莓上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额﹣日维护费)

3)求日销售利润的最大值及相应的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,两个完全相同的三角形纸片 ABC DEC 重合放置,其中∠C=90°,∠B=E=30°

操作发现:如图 2,固定ABC,使DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时, 填空:

①线段 DE AC 的位置关系是

②设BDC 的面积为 S1AEC 的面积为 S2,则 S1 S2 的数量关系是

猜想论证

DEC 绕点 C 旋转到如图 3 所示的位置时,请猜想(1)中 S1 S2 的数量关系是否仍 然成立?若成立,请证明;若不成立,请说明理由.

拓展探究

已知∠ABC=60°BD 平分∠ABCBD=CDBE=6DEAB BC 于点 E(如图 4).若在射线 BA 上存在点 F,使 SDCF=SBDE,请求相应的 BF 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.

(1)求k的取值范围;

(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块直角三角形纸片,两直角边AC=6cmBC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD等于( )

A. 3cmB. 4cmC. 5cmD. 6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.

(1)求点C的坐标;

(2)当∠BCP=15°时,求t的值;

(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.

查看答案和解析>>

同步练习册答案