【题目】某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵树种植点的坐标应为( )
A.(6,2020)B.(2019,5)C.(3,403)D.(404,4)
【答案】D
【解析】
根据已知分别求出1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤10时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通过观察得到点的坐标特点,进而求解.
解:由题可知1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),
当6≤k≤10时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),
……
通过以上数据可得,P点的纵坐标5个一组循环,
∵2019÷5=403…4,
∴当k=2019时,P点的纵坐标是4,横坐标是403+1=404,
∴P(404,4),
故选:D.
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“作圆的一个内接矩形,并使其对角线的夹角为60°”的尺规作图过程
已知:⊙O
求作:矩形ABCD,使得矩形ABCD内接于⊙O,且其对角线AC,BD的夹角为60°.
作法:如图
①作⊙O的直径AC;
②以点A为圆心,AO长为半径画弧,交直线AC上方的圆弧于点B;
③连接BO并延长交⊙O于点D;
所以四边形ABCD就是所求作的矩形.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:∵点A,C都在⊙O上,
∴OA=OC
同理OB=OD
∴四边形ABCD是平行四边形
∵AC是⊙O的直径,
∴∠ABC=90° ( )(填推理的依据)
∴四边形ABCD是矩形
∵AB= =BO,
∴四边形ABCD四所求作的矩形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知将抛物线y=x2﹣1沿x轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点M满足横、纵坐标都为整数,则把点M叫做“整点”),它们分别是(1,0),(﹣1,0),(0,0),(0,1),(0,﹣1).现将抛物线y=a(x+1)2+2(a<0)沿x轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则a的取值范围是( )
A.﹣1<a<﹣B.a<﹣1C.a<﹣D.﹣1≤a<﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,BC是⊙O的切线,连接AC与⊙O交于点 D.取BC的中点E,连接DE,并连接OE交⊙O于点F.连接AF交BC于点G,连接BD交AG于点H.
(1)若EF=1,BE=,求∠EOB的度数;
(2)求证:DE为⊙O的切线;
(3)求证:点F为线段HG的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块长30cm,宽12cm的矩形铁皮,
(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为 .
(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请求出盒子的体积;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以等腰△ABC的一腰AC为直径作⊙O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)证明:∠CAD=∠CDF;
(3)若∠F=30°,AD=,求⊙O的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y 的对应值如表所示:
给出下列说法:①抛物线与y轴的交点为(0,6); ②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(3,0); ④在对称轴左侧,y随x增大而减小.从表中可知,下列说法正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为( )
A. (b+2a,2b) B. (﹣b﹣2c,2b)
C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com