【题目】一块长30cm,宽12cm的矩形铁皮,
(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为 .
(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请求出盒子的体积;如果不能,请说明理由.
【答案】(1)(30﹣2x)(12﹣2x)=144;(2)能折出底面积为104cm2的有盖盒子,盒子的体积为208m3
【解析】
(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,根据矩形的面积公式,即可得出关于x的一元二次方程,此问得解;
(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,根据矩形的面积公式,即可得出关于y的一元二次方程,解之取其较小值,再利用长方体的体积公式即可求出结论.
解:(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,
依题意,得:(30﹣2x)(12﹣2x)=144.
故答案为:(30﹣2x)(12﹣2x)=144.
(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,
依题意,得:(﹣y)(12﹣2y)=104,
整理,得:y2﹣21y+38=0,
解得:y1=2,y2=19(不合题意,舍去),
∴盒子的体积=104×2=208(cm3).
答:能折出底面积为104cm2的有盖盒子,盒子的体积为208m3.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=,BC=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90后得到△A1OB1.
(1)在网格中画出△A1OB1,并标上字母;
(2)点A关于O点中心对称的点的坐标为 ;
(3)点A1的坐标为 ;
(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(为方便答题,可在答题卡上画出你认为必要的图形)
在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1=CE1 ,且BD1⊥CE1 ;
(3)求点P到AB所在直线的距离的最大值.(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵树种植点的坐标应为( )
A.(6,2020)B.(2019,5)C.(3,403)D.(404,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).
(1)求一次函数与反比例函数的解析式;
(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:
n名学生对使用计算器影响计算能力的发展看法人数统计表
看法 | 没有影响 | 影响不大 | 影响很大 |
学生人数(人) | 40 | 60 | m |
(1)求n的值;
(2)统计表中的m= ;
(3)估计该校1800名学生中认为“影响很大”的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com