【题目】类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P是斜坐标系xOy中的任意一点,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,如果M、N在x轴、y轴上分别对应的实数是a、b,这时点P的坐标为(a,b).
(1)如图2,在斜坐标系xOy中,画出点A(﹣2,3);
(2)如图3,在斜坐标系xOy中,已知点B(5,0)、C(0,4),且P(x,y)是线段CB上的任意一点,则y与x之间的等量关系式为 ;
(3)若(2)中的点P在线段CB的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.
【答案】(1)见解析;(2)3x+4y=12;(3)仍然成立
【解析】
试题分析:(1)作AM∥y轴,AM与x轴交于点M,AN∥x轴,AN与y轴交于点N,构建菱形AMON,然后根据菱形的性质以及等边三角形的判定与性质来求OA的长度;
(2)过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,则 PN=x,PM=y;根据平行线截线段成比例分别列出关于x、y的比例式、;再由线段间的和差关系求得PC+BP=BC知;
(3)当点P在线段BC的延长线上时,上述结论仍然成立.理由如下:这时 PN=﹣x,PM=y,证明过程同(2).
(1)作AM∥y轴,AM与x轴交于点M,AN∥x轴,AN与y轴交于点N,构建菱形AMON,然后根据菱形的性质以及等边三角形的判定与性质来求OA的长度;
(2)过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,则 PN=x,PM=y;根据平行线截线段成比例分别列出关于x、y的比例式、;再由线段间的和差关系求得PC+BP=BC知;
(3)当点P在线段BC的延长线上时,上述结论仍然成立.理由如下:这时 PN=﹣x,PM=y,证明过程同(2).
试题解析:(1)如图1作AM∥y轴,AM与x轴交于点M,AN∥x轴,AN与y轴交于点N,
则四边形AMON为平行四边形,且OM=ON,
∴AMON是菱形,OM=AM
∴OA平分∠MON,
又∵∠xOy=60°,
∴∠MOA=60°,
∴△MOA是等边三角形,
∴OA=OM=2;
(2)过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,
则 PN=x,PM=y,
由PN∥OB,得即;
由PM∥OC,得,即;
∴,
即 3x+4y=12;
故答案为:3x+4y=12;
(3)(2)中的结论仍然成立,如图3,当点P在线段BC的延长线上时,上述结论仍然成立.理由如下:这时 PN=﹣x,PM=y,
与(2)类似,,.
又∵.
∴,.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 抛掷一枚硬币10次,正面朝上必有5次;
B. 掷一颗骰子,点数一定不大于6;
C. 为了解某种灯光的使用寿命,宜采用普查的方法;
D. “明天的降水概率为90%”,表示明天会有90%的地方下雨.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.
(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;
(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.
①判断OQ与AC的位置关系,并说明理由;
②求线段PQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 明天会下雨是必然事件
B. 不可能事件发生的概率是0
C. 在水平的桌面上任意抛掷一枚图钉,一定针尖向下
D. 投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com