精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD是⊙O的内接正方形,延长BA到E,使AE=AB,连接ED.

(1)求证:直线ED是⊙O的切线;

(2)连接EO交AD于点F,求证:EF=2FO.

【答案】
(1)

证明:(1)连接OD.


∵四边形ABCD为正方形,AE=AB.
∴AE=AB=AD,∠EAD=∠DAB=90°,
∴∠EDA=45°,∠ODA=45°,
∴∠ODE=∠ADE+∠ODA=90°,
∴直线ED是⊙O的切线.


(2)

证明:作OM⊥AB于M,
∵O为正方形的中心,
∴M为AB中点,
∴AE=AB=2AM,AF∥OM,

∴EF=2FO.


【解析】(1)连接OD,只需证明OD⊥DE.根据正方形的性质得到AE=AD,则∠ADE=45°.又∠ADO=45°则证明了结论;(2)作OM⊥AB于M.根据平行线分线段成比例定理进行证明.
【考点精析】认真审题,首先需要了解正多边形和圆(圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中:A(11)B(11)C(1,-2)D(1,-2),现把一条长为2 018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABCABC=90°AB=20BC=15,DAC边上的动点,点D从点C出发,沿CAA运动,当运动到点A时停止.若设点D的运动时间为t秒,点D运动的速度为每秒2个单位长度.

1)当t=2时,求CDAD的长;

2)在D运动过程中,CBD能否为直角三角形,若不能,请说明理由,若能,请求出t的值;

3)当t为何值时,CBD是等腰三角形,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E是正方形ABCD的边CD外的一点,DCE为等边三角形,BE交对角线ACF .

(1)求∠AFD的度数

(2)求证:AF = EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OB平分∠AOC,OD平分∠COE,∠AOD=110°,∠BOE=100°,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是长方体的平面展开图.

(1)将平面展开图折叠成一个长方体,与字母N重合的点有哪几个?

(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:

与标准质量的差值
(单位:g

5

2

0

1

3

6

袋 数

1

4

3

4

5

3

1)这批样品的平均质量比标准质量多还是少?多或少几克?

2)若每袋标准质量为450克,则抽样检测的总质量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、E分别在直线ACDF上,若∠AGB=∠EHF,∠C=∠D,可以证明∠A=∠F.请完成下面证明过程中的各项“填空”.

证明:∵∠AGB=∠EHF(理由:

∠AGB= (对顶角相等)

∴∠EHF=∠DGF,∴DB∥EC(理由:

=∠DBA(两直线平行,同位角相等)

又∵∠C=∠D,∴∠DBA=∠D,

∴DF∥ (内错角相等,两直线平行)

∴∠A=∠F(理由: ).

查看答案和解析>>

同步练习册答案