【题目】为满足社区居民健身的需要,区政府准备采购若干套健身器材免费提供给社区,经考察,康乐公司有甲,乙两种型号的健身器材可供选择.
(1)康乐公司2017年每套甲型健身器材的售价为2万元,经过连续两年降价,2019年每套售价为1.28万元,求每套甲型健身器材售价的年平均下降率n;
(2)2019年市政府经过招标,决定年内采购并安装康乐公司甲,乙两种型号的健身器材共80套,采购专项经费总计不超过95万元,采购合同规定:每套甲型健身器材售价为1.28万元,每套乙型健身器材售价为1.4(1﹣n)万元.
①甲型健身器材最多可购买多少套?
②按照甲型健身器材购买最多的情况下,安装完成后,若每套甲型和乙型健身器材一年的养护费分别是购买价的8%和10%,区政府计划支出9万元进行养护,问该计划支出能否满足一年的养护需要?
【答案】(1)每套甲型健身器材售价的年平均下降率为0.2;(2)①甲型健身器材最多可购买33套;②该计划支出能满足一年的养护需要.
【解析】
(1)根据原价及经过两次降价后的价格,即可得出关于n的一元二次方程,解之取其正值即可求解;
(2)①设购买甲型健身器材x套,则购买乙型健身器材(80﹣x)套,根据总价=单价×数量结合采购专项经费总计不超过95万元,即可得出关于x的一元一次不等式,解之取其中的最大整数值即可求解;
②根据总价=单价×数量结合每套甲型和乙型健身器材一年的养护费分别是购买价的8%和10%,可求出一年需要支出的养护费,将其与9万元进行比较后即可求解.
解:(1)依题意,得:2(1﹣n)2=1.28,
解得:n1=0.2,n2=1.8(不合题意,舍去).
答:每套甲型健身器材售价的年平均下降率为0.2.
(2)①设购买甲型健身器材x套,则购买乙型健身器材(80﹣x)套,
依题意,得:1.28x+1.4×(1﹣0.2)(80﹣x)≤95,
解得:x≤33.
∵x为正整数,
∴x的最大值为33.
答:甲型健身器材最多可购买33套.
②1.28×33×8%+1.4×(1﹣0.2)×(80﹣33)×10%=8.6432(万元),
∵8.6432<9,
∴该计划支出能满足一年的养护需要.
科目:初中数学 来源: 题型:
【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
A 型 | B 型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.
求证:(1)∠AOC=2∠ACD;(2)AC2=AB·AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为( )米.(精确到0.1米,参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
A.5.6B.6.9C.11.4D.13.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.
(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.
(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;
(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;
(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
成绩x 学校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)
b.甲校成绩在这一组的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
学校 | 平均分 | 中位数 | 众数 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com