【题目】已知,如图①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.
(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.
【答案】t=;y=-;1:4;t=
【解析】试题分析: 当PQ∥MN时,可得: ,从而得到: ,解方程求出的值;
作于点,则可以得到,根据相似三角形的性质可以求出, ,利用三角形的面积公式求出与的关系式;
根据S△QMC: 可以得到关于的方程,解方程求出的值;
作于点, 于点,则△CPD∽△CBA,利用相似三角形的性质可以得到: ,解方程求出的值.
试题解析:(1)如图所示,
若PQ∥MN,则有,
∵, , ,
∴,
即,
解得.
(2)如图所示,
作于点,则△CPD∽△CBA,
∴,
∵, , ,
∴,
∴
又∵,
∴△QMC的面积为:
(3)存在时,使得S△QMC: .
理由如下:
∵PM∥BC
∴
∵S△QMC: ,
∴S△PQC: S△ABC=1:5,
∵
.∴
∴
∴
∴存在当时,S△QMC: ;
(4)存在某一时刻,使.
理由如下:
如图所示,
作于点, 于点,则△CPD∽△CBA,
∴,
∵, , , ,
∴,
∴, .
∵PQ⊥MQ,
∴△PDQ∽△QEM,
∴,
即
∵,
,
,
∴,
即,
∴, (舍去)
∴当时,使PQ⊥MQ.
科目:初中数学 来源: 题型:
【题目】某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0)。未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元。通过市场调研发现,该时装单价每降1元,每天销量增加4件。在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为_____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励节约用电,某地用电收费标准规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.
(1)如果小张家一个月用电128度,那么这个月应缴纳电费多少元?
(2)如果小张家一个月用电a度,那么这个月应缴纳电费多少元?(用含a的代数式表示)
(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市展览馆某天四个时间段进出馆人数统计如下表,则馆内人数变化最大的时间段为_______________.
9:00-10:00 | 10:00-11:00 | 14:00-15:00 | 15:00-16:00 | |
进馆人数 | 50 | 24 | 55 | 32 |
出馆人数 | 30 | 65 | 28 | 45 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2 A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 ;第n个三角形中以An为顶点的内角的度数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com