精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣ +bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣ +bx+c的图象分别交于B,C两点,点B在第一象限.

(1)求二次函数y=﹣ +bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.

【答案】
(1)

解:当x=0时,y=c,即(0,c).

由当x=0和x=5时所对应的函数值相等,得(5,c).

将(5,c)(1,0)代入函数解析式,得

解得

故抛物线的解析式为y=﹣ x2+ x﹣2


(2)

解:联立抛物线与直线,得

解得

即B(2,1),C(5,﹣2).

由勾股定理,得

AB= =


(3)

解:如图:

四边形ABCN是平行四边形,

证明:∵M是AC的中点,

∴AM=CM.

∵点B绕点M旋转180°得到点N,

∴BM=MN,

∴四边形ABCN是平行四边形


【解析】(1)根据当x=0和x=5时所对应的函数值相等,可得(5,c),根据待定系数法,可得函数解析式;(2)联立抛物线与直线,可得方程组,根据解方程组,可得B、C点坐标,根据勾股定理,可得AB的长;(3)根据线段中点的性质,可得M点的坐标,根据旋转的性质,可得MN与BM的关系,根据平行四边形的判定,可得答案.
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC如图所示.则与△ABC相似的是图中的(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一条街道旁有A,B,C,D,E五幢居民楼某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:

楼号

A

B

C

D

E

大桶水/

38

55

50

72

85

他计划在这五幢楼中租赁一间门市房设立大桶水供应点若仅考虑这五幢楼内的居民取水所走路程之和最小则可以选择的地点应在(  ).

A. B B. C C. D D. E

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)

(2)

(3)

(4)3x-7(x-1)=3-2(x+3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x的增大而减小.
(1)求抛物线的解析式;
(2)结合图象写出,0<x<4时,直接写出y的取值范围
(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AC为对角线,EAB上一点,过点EEF∥AD,与AC,DC分别交于点G,F,HCG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有(

①EG=DF;

②∠AEH+∠ADH=180°;

③△EHF≌△DHC;

,则SEDH=13SCFH .

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,O,B依次在直线MN上,如图1,现将射线OA绕点O顺时针方向以每秒10°的速度旋转,同时射线OB绕着点O按逆时针方向以每秒15°的速度旋转,直线MN保持不动,如图2,设旋转时间为t秒(t≤12).

(1)在旋转过程中,当t=2时,求∠AOB的度数.

(2)在旋转过程中,当∠AOB=105°时,求t的值.

(3)在旋转过程中,当OAOB是某一个角(小于180°)的角平分线时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90,BD平分∠ABC,交ACD,OEF分别在BDBC

AC上,且四边形OECF是正方形.

(1)求证:点O在∠BAC的平分线上;

(2)若AC=5,BC=12,求OE的长.

查看答案和解析>>

同步练习册答案