精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,DBC边中点,PAC边中点,EBC上一点且BECE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PGBC边交于点H.若BC9,则HE_____.

【答案】1

【解析】

连接PQ.依次求出BEECPQ(用中位线定理)、DH(证明△PQG≌△HDG)、BH即可解决问题.

解:连接PQ

BC9DBC边中点,BECE
BD=DC=BE=BC= 2EC= 7
AQ=QEAP=PC

PQECPQ= EC=
∴∠QPG=GHD

∵∠QGP=DGHQG=GD
∴△PQG≌△HDGAAS),
HD=PQ=

BH=BD-DH=-= 1
HE=BE-BH= 2- 1= 1
故答案为1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】RtABC中,∠C90°,BD平分∠ABCAC于点DDE垂直平分线段AB

1)求∠A

2)若DE2cmBD4cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点EBC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.

(1)如图2,若点EBC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EFCA的延长线交于点Q.设BPx,CQy,试求yx的函数关系式,并写出自变量x的取值范围;

(2)如图3,点E在边BC上沿BC的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径做弧,交EF于点B,ABCD.

(1)求证:四边形ACDB为△CFE的亲密菱形;

(2)求四边形ACDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有( )个平行四边形

A.22B.24C.26D.28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴相交于A3,0、B1,0两点,与y轴相交于点C0,3,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D

1求D点坐标;

2求二次函数的解析式;

3根据图象直接写出使一次函数值小于二次函数值的x的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的两个一元二次方程:

方程①

方程②:x2+(2k+1)x﹣2k﹣3=0.

(1)若方程①有两个相等的实数根,求:k

(2)若方程①和②只有一个方程有实数根,请说明此时哪个方程没有实数根.

(3)若方程①和②有一个公共根a,求代数式(a2+4a﹣2)k+3a2+5a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,点P是∠AOB的平分线OC上的一点,我们可以分别OAOB在截取点MN,使OM=ON,连结PMPN,就可得到.

1)请你在图①中,根据题意,画出上面叙述的全等三角形,并加以证明.

2)请你参考(1)中的作全等三角形的方法,解答下列问题:

(Ⅰ)如图②,在△ABC中,∠ACB是直角,B=60°,ADCE分别是∠BAC、∠BCA的平分线,ADCE相交于点F.请你判断并写出FEFD之间的数量关系.

(Ⅱ)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(Ⅰ)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,添加下列条件后,不能判断四边形为菱形的是(

A. 平分

B.

C. 为中线

D.

查看答案和解析>>

同步练习册答案