16£®Ä³Ð£Éç»á»î¶¯Êµ¼ùС×éµÄͬѧÃÇΪÁ˽â2015Äê½Ì¹¤Ð¡Çø¼ÒÍ¥ÔÂÆ½¾ùÓÃË®Çé¿ö£¬Ëæ»úµ÷²éÁ˸ÃÐ¡Çø²¿·Ö¼ÒÍ¥£¬²¢½«µ÷²éÊý¾ÝÕûÀí³ÉÈçϵÄͳ¼Æ±íºÍÖ±·½Í¼
 ÔÂÆ½¾ùÓÃË®Á¿x£¨t£©ÆµÊý£¨»§£© ÆµÂÊ 
 0£¼x¡Ü5 60.12 
 5£¼x¡Ü10 m0.24 
 10£¼x¡Ü15 n 0.32
 15£¼x¡Ü2010 0.20
 20£¼x¡Ü254
 25£¼x¡Ü302 0.04
¸ù¾ÝÉÏÊöµÄÊý¾ÝÕûÀíÐÅÏ¢£¬Çë½â´ðÒÔÏÂÎÊÌ⣺
£¨1£©Çó³öͳ¼Æ±íÖÐm£¬nµÄÖµ£»
£¨2£©°ÑƵÊý·Ö²¼Ö±·½Í¼²¹³äÍêÕû£»
£¨3£©Èô¸ÃÐ¡ÇøÓÐ1500»§¼ÒÍ¥£¬¸ù¾Ýµ÷²éÊý¾Ý¹À¼Æ£¬¸ÃÐ¡ÇøÔÂÆ½¾ùÓÃË®Á¿³¬¹ý20tµÄ¼ÒÍ¥´óÔ¼ÓжàÉÙ»§£¿

·ÖÎö £¨1£©¸ù¾ÝµÚÒ»×éµÄƵÊýÊÇ6£¬¶ÔÓ¦µÄƵÂÊÊÇ0.12£¬¾Ý´Ë¼´¿ÉÇóµÃµ÷²éµÄ×ÜÈËÊý£¬È»ºó¸ù¾ÝƵÂʵÄÒâÒåÇóµÃm¡¢nµÄÖµ£»
£¨2£©¸ù¾Ý£¨1£©µÄ½á¹û¼´¿É²¹È«Ö±·½Í¼£»
£¨3£©ÀûÓÃ×ÜÊý1500³ËÒÔ¶ÔÓ¦µÄ°Ù·Ö±È¼´¿ÉÇóµÃ£®

½â´ð ½â£º£¨1£©µ÷²éµÄ×ÜÈËÊýÊÇ£º6¡Â0.12=50£¨»§£©£¬
Ôòm=50¡Á0.24=12£¬n=50¡Á0.32=16£¨»§£©£»
£¨2£©ÈçͼËùʾ£º
£»
£¨3£©1500£¨1-0.12-0.24-0.32-0.20£©=180£¨»§£©£®
´ð£º¹À¼Æ¸ÃÐ¡ÇøÔÂÆ½¾ùÓÃË®Á¿³¬¹ý20tµÄ¼ÒÍ¥´óÔ¼ÓÐ180»§£®

µãÆÀ ±¾Ì⿼²é¶ÁƵÊý·Ö²¼Ö±·½Í¼µÄÄÜÁ¦ºÍÀûÓÃͳ¼ÆÍ¼»ñÈ¡ÐÅÏ¢µÄÄÜÁ¦£»ÀûÓÃͳ¼ÆÍ¼»ñÈ¡ÐÅϢʱ£¬±ØÐëÈÏÕæ¹Û²ì¡¢·ÖÎö¡¢Ñо¿Í³¼ÆÍ¼£¬²ÅÄÜ×÷³öÕýÈ·µÄÅжϺͽâ¾öÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁи÷×éÊýÖУ¬ÊǶþÔªÒ»´Î·½³Ì3x-y=5µÄ½âµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁи÷ʽÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a2+a2=2a4B£®£¨1-a£©£¨1+a£©=a2-1C£®£¨-3a2b£©3=-9a6b3D£®3a£¨-2a£©3=-24a4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®µ±x¡¢yÂú×ãÌõ¼þx=y¡Ù1ʱ£¬·Öʽ$\frac{x-y}{1-x}$µÄֵΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁмÆËãÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®2a+3b=5abB£®£¨3a3£©2=6a6C£®a6+a2=a3D£®-3a+2a=-a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ë³´ÎÁ¬½Ó¶Ô½ÇÏßÏàµÈµÄËıßÐεĸ÷±ßÖе㣬ËùµÃͼÐÎÒ»¶¨ÊÇ£¨¡¡¡¡£©
A£®Æ½ÐÐËıßÐÎB£®¾ØÐÎC£®ÁâÐÎD£®Õý·½ÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®»¯¼ò£º2£¨3x2-2xy£©-4£¨2x2-xy-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨$\sqrt{2}$+1£©£¨$\sqrt{2}$-1£©=1£¬£¨$\sqrt{3}$+$\sqrt{2}$£©£¨$\sqrt{3}$-$\sqrt{2}$£©=1£¬£¨$\sqrt{4}$+$\sqrt{3}$£©£¨$\sqrt{4}$-$\sqrt{3}$£©=1¡­
¹Û²ìÉÏÃæµÄ¹æÂÉ£¬¼ÆËãÏÂÃæµÄʽ×Ó£º
$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+¡­+$\frac{1}{\sqrt{2012}+\sqrt{2011}}$+$\frac{1}{\sqrt{2013}+\sqrt{2012}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬Á½Èñ½ÇµÄƽ·ÖÏßAD£¬BEÏཻÓÚµãO£¬OF¡ÍACÓÚµãF£¬OG¡ÍBCÓÚµãG£¬ÇóÖ¤£ºËıßÐÎOGCFÊÇÕý·½ÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸