【题目】如图1,在面积为的等腰纸板中,在直角边,上各取一点,,为的中点,将,分别沿,折叠,对应边,分别交,于点,,再将沿折叠,点的对应点落在的内部(如图2所示),翻面画上眼睛和鼻子,得到了一幅可爱的“猫脸图”(如图3所示),若点与点之间的距离为,则五边形的面积为__________.
【答案】
【解析】
连接AD和GH交于点O, B′C′与AD交于点R、GH、,过点H作 HM⊥BC于点M,过点F作 FN⊥BC于点N,由对称性可知,点A′在AD上,∵∠C=45°,∴△HMC、△FNC是等腰直角三角形,因为等腰RtΔABC面积为49cm2,可得AB=AC=7 ,AD=BD=DC=7,
由B′C′=,得C′R =,再由DC′=DC=7,由勾股定理得DR=,所以C′R:RD:C′D=::7=3:4:5,易得△DHO∽△D C′R,所以HO:OD:DH= C′R:RD:C′D=3:4:5,
设HO=3a,OD=4a,DH=5a,易得四边形ODMH是矩形,△HMC、△FNC是等腰直角三角形,所以DM=OH=3a,HM=OD=MC=4a,而DM+MC=7a=7,解得a=1,即HM=OD=MC=4a=4,DH=5,DM=OH=3a=3,
由折叠得∠1=∠2,所以DH:DC=HF:FC=5:7,又因为FN∥HM,所以HF:FC=MN:NC=5:7,MC:NC=12:7即NC=MC=×4==NF,再根据五边形GHFDE的面积=梯形GHCB -2S△DFC即可解答.
连接AD和GH交于点O, B′C′与AD交于点R、GH、,过点H作 HM⊥BC于点M,过点F作 FN⊥BC于点N,
由对称性可知,点A′在AD上,∵∠C=45°,∴△HMC、△FNC是等腰直角三角形,
∵等腰RtΔABC面积为49cm2,∴AB=AC=7 ,AD=BD=DC=7,
∵B′C′=,∴C′R =,
∵DC′=DC=7,∴由勾股定理得DR=,
∴C′R:RD:C′D=::7=3:4:5,
∵易得△DHO∽△D C′R
∴HO:OD:DH= C′R:RD:C′D=3:4:5,
设HO=3a,OD=4a,DH=5a,
∵四边形ODMH是矩形,△HMC、△FNC是等腰直角三角形,
∴DM=OH=3a,HM=OD=MC=4a,
∵DM+MC=7a=7,∴a=1,即HM=OD=MC=4a=4,DH=5,DM=OH=3a=3,
∵∠1=∠2,
∴DH:DC=HF:FC=5:7,
又∵FN∥HM,
∴HF:FC=MN:NC=5:7,
∴MC:NC=12:7即NC=MC=×4==NF,
∴五边形GHFDE的面积=梯形GHCB -2S△DFC=(6+14)×4-2××7×=40-=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费,如图是张磊家2018年2月和3月所交电费的收据.
(1)该市规定的第一阶梯电价和第二阶梯电价单价分别为多少?
(2)张磊家4月份家庭支出计划中电费为160元,他家最大用电量为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
A. a﹣d=b﹣cB. a+c+2=b+dC. a+b+14=c+dD. a+d=b+c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了参加2018年的全国初中生数学竞赛,乔老师利用寒假把甲、乙两名同学的前五个学期的数学成绩(单位:分)统计成下表:
第一学期 | 第二学期 | 第三学期 | 第四学期 | 第五学期 | |
甲 | 75 | 80 | 85 | 90 | 95 |
乙 | 95 | 87 | 88 | 80 | 75 |
(1)分别求出甲、乙两名同学前五个学期的数学平均成绩;
(2)在图中分别画出甲、乙两名同学前五个学期的数学成绩的折线统计图;
(3)如果你是乔老师,你认为应该派哪名学生参加数学竞赛?请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对本校初中学生完成家庭作业的时间做了总量控制,规定学生每天完成家庭作业的时间少于1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间作了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.
时间(时) | 频数 | 频率 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合计 | 1 |
(1)在频数分布表中,a=________,b=________;
(2)补全频数分布直方图;
(3)请估计该校1400名初中学生中,有多少名学生在1.5小时以内(不包括1.5小时)完成了家庭作业?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,DB=DA,∠ADB的角平分线与AB相交于点F,与CB的延长线相交于点E连接AE.
(1)求证:四边形AEBD是菱形.
(2)若四边形ABCD是菱形,DC=10,则菱形AEBD的面积是 .(直接填空,不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)直接写出当x>0时,的解集.
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc>0;②0<<;③若点A(﹣3,y1),B(3,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有( )个.
A. 4B. 3C. 2D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com