【题目】如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为( )
A.
B.
C.
D.
【答案】D
【解析】解:∵以B为圆心BC为半径画弧交AD于点E,
∴BE=BC=5,
∴AE= ,
∴DE=AD﹣AE=5﹣4=1,
∴CE= ,
∵BC=BE,BF⊥CE,
∴点F是CE的中点,
∴CF= ,
∴BF= ,
∴tan∠FBC= ,
即tan∠FBC的值为 .
所以答案是:D.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对垂径定理的推论的理解,了解推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y= +bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).
(1)求抛物线的解析式;
(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,
①试说明EF是圆的直径;
②判断△AEF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分) 已知,如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.
(1)求证:BE=DF;
(2)若AB=5,AD=3,求AE的长;
(3)若△ABC的面积是23,△ADC面积是18,则△BEC的面积等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某种车的耗油量,我们对这种车在高速公路以100km/h的速度做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) | 0 | 1 | 2 | 3 | … | |
油箱剩余油量Q(L) | 100 | 94 | 88 | 82 | … |
(1)根据上表的数据,你能用t表示Q吗?试一试;
(2)汽车行驶6h后,油箱中的剩余油量是多少?
(3)若汽车油箱中剩余油量为52L,则汽车行驶了多少小时?
(4)若该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B(a,b)是第一象限内一点,且a、b满足等式a2-6a+9+|b-1|=0.
(1)求点B的坐标;
(2)如图,动点C以每秒1个单位长度的速度从O点出发,沿x轴的正半轴方向运动,同时动点A以每秒2个单位长度的速度从O点出发,沿y轴的正半轴方向运动,设运动的时间为t秒,当t为何值时,△ABC是AB为斜边的等腰直角三角形;
(3)如图,在(2)的条件下,作∠ABC的平分线BD,设BD的长为m,△ADB的面积为S.请用含m的式子表示S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形OMN与正方形ABCD,半径OM与边AB重合,弧MN的长等于AB的长,已知AB=2,扇形OMN沿着正方形ABCD逆时针滚动到点O首次与正方形的某顶点重合时停止,则点O经过的路径长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着互联网技术的广泛应用,“天猫”、“京东”、“唯品会”等网络大型‘:卖场”的日趋完善,网购成了现代人生活的一部分。与此同时,快递行业也随之高速发展.
(1)如果每名快递员每月最多完成快递投递量相同,且每月投递完l2万件快递量需要快递员比投递完12.6万件快递置需要快递员人数少1人,求每名快递员每月最多完成快递投递量是多少万件;
(2)我市某小型快递公司原有员工20名,随着快递投递任务的加大,该快递公司投入部分资金用于改善投递条件,改善后,每人每月投递快递任务量可增加,同时该快递公司又增加了20%的快递员,从而预计每月最大可完成投递快递任务l5.12万件,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是8×8的正方形网格,每个小方格都是边长为1的正方形,A、B是格点(网格线的交点).以网格线所在直线为坐标轴,在网格中建立平面直角坐标系xOy,使点A坐标为(﹣2,4).
(1)在网格中,画出这个平面直角坐标系;
(2)在第二象限内的格点上找到一点C,使A、B、C三点组成以AB为底边的等腰三角形,且腰长是无理数,则点C的坐标是 ;并画出△ABC关于y轴对称的△A′B′C′.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的度数为( )
A. 100° B. 80° C. 70° D. 50°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com