精英家教网 > 初中数学 > 题目详情

【题目】如图是8×8的正方形网格,每个小方格都是边长为1的正方形,A、B是格点(网格线的交点).以网格线所在直线为坐标轴,在网格中建立平面直角坐标系xOy,使点A坐标为(﹣2,4).

(1)在网格中,画出这个平面直角坐标系;

(2)在第二象限内的格点上找到一点C,使A、B、C三点组成以AB为底边的等腰三角形,且腰长是无理数,则点C的坐标是   ;并画出△ABC关于y轴对称的△A′B′C′.

【答案】(1)见解析;(2)(﹣1,1);画图见解析.

【解析】

(1)由点A(﹣2,4)可建立平面直角坐标系;

(2)根据等腰三角形的定义作图可得,再分别作出点ABC关于y轴的对称点,顺次连接即可得.

(1)如图所示,建立平面直角坐标系;

(2)如图所示,△ABC即为所求,其中点C的坐标为(﹣1,1),ABC关于y轴对称的△A′B′C′如图所示,

故答案为:(﹣1,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司为一种新型电子产品在该城市的特约经销商,已知每件产品的进价为40元,该公司每年销售这种产品的其他开支(不含进货价)总计100万元,在销售过程中得知,年销售量y(万件)与销售单价x(元)之间存在如表所示的函数关系,并且发现y是x的一次函数.

销售单价x(元)

50

60

70

80

销售数量y(万件)

5.5

5

4.5

4


(1)求y与x的函数关系式;
(2)问:当销售单价x为何值时,该公司年利润最大?并求出这个最大值;
【备注:年利润=年销售额﹣总进货价﹣其他开支】
(3)若公司希望年利润不低于60万元,请你帮助该公司确定销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,给出下列四个条件:① ∠BAC=∠DCA② ∠DAC=∠BCA③ ∠ABD=∠CDB④ ∠ADB=∠CBD,其中能使 ADBC的条件是(

A.①②B.③④C.②④D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在四边形中,.

(1)如图1.连接,若,求证:.

(2)如图2,点分别在线段上,满足,求证:;

(3)若点的延长线上,点的延长线上,如图3所示,仍然满足,请写出的数量关系,并给出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN的包装盒,设AE=x (cm).

(1)求线段GF的长;(用含x的代数式表示)
(2)当x为何值时,矩形GHPF的面积S (cm2)最大?最大面积为多少?
(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AD,AC=5,DAB=DCB=90°,则四边形ABCD的面积为(  )

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD,点MN分别是ABCD上两点,点GABCD之间,连接MGNG

1)如图1,若GMGN,求∠AMG+∠CNG的度数;

2)如图2,若点PCD下方一点,MG平分∠BMPND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度数;

3)如图3,若点EAB上方一点,连接EMEN,且GM的延长线MF平分∠AMENE平分∠CNG2MEN+∠MGN105°,求∠AME的度数.

查看答案和解析>>

同步练习册答案