【题目】我市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这种草皮每平方米售价为元,则购买这种草皮至少需要______元.(用含的式子表示)
科目:初中数学 来源: 题型:
【题目】为进一步推动我县校园足球运动的发展,提高全县中小学生足球竞技体育水平,选拔和培养优秀足球后备人才,增强青少年体质,进一步营造全社会关注青少年足球运动的氛围,汶上县第五届“县长杯”校园足球比赛于2019年11月9日—11月24日成功举办.我县县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.
(1)求每套队服和每个足球的价格分别是多少;
(2)若城区四校联合购买100套队服和个足球,请用含的式子分别表示出到甲商场和乙商场购买装备所花的费用;
(3)在(2)的条件下,若,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,CD=4,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
如图所示,、均为锐角三角形,,,.
求证:.
证明:分别过点B,作于点D,于点.
∴.
在和,
∴.
.
____________________________________________________________.
(请你将上述证明过程补充完整)
(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,厘米,厘米,点为的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等, 与是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,张老师举了下面的例题:
例1 等腰三角形中,,求的度数.(答案:)
例2 等腰三角形中,,求的度数.(答案:或或)
张老师启发同学们进行变式,小敏编了如下一题:
变式 等腰三角形中,,求的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在中,,,对角线,相交于点.点是线段上一动点(不与、重合),连接,以为边在的右侧作,且,.
(1)如图①,若点落在线段上,则线段与线段的数量关系是______;
(2)如图②,若点不在线段上,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并。立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)
(1)直接写出渔船离开港口的距离s和渔船离开港口的时间t之间的函数关系式
(2)求渔船与渔政船相遇对,两船与黄岩岛的距离、
(3在渔政船驶往黄岩岛的过程中,求渔船从港口 出发经过多长时间与渔政船相距30海里?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com