精英家教网 > 初中数学 > 题目详情
5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是(  )
A.1对B.2对C.3对D.4对

分析 由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.

解答 解:∵AB=AC,D是BC的中点,
∴∠CAD=∠BAD,AD⊥BC,
∴OC=OB,
在△ACD和△ABD中,
$\left\{\begin{array}{l}{AC=AB}\\{∠CAD=∠BAD}\\{AD=AD}\end{array}\right.$,
∴△ACD≌△ABD(SAS);
同理:△COD≌△BOD,
在△AOC和△AOB中,
$\left\{\begin{array}{l}{OA=OA}\\{OC=OB}\\{AC=AB}\end{array}\right.$,
∴△OAC≌△OAB(SSS);
∵EF是AC的垂直平分线,
∴OA=OC,∠OEA=∠OEC=90°,
在Rt△OAE和Rt△OCE中,
$\left\{\begin{array}{l}{OA=OC}\\{OE=OE}\end{array}\right.$,
∴Rt△OAE≌Rt△OCE(HL).
故选D.

点评 此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B
(1)求证:PC是⊙O的切线;
(2)若PC=6,PA=4,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在一次数学课外实践活动,小文在点C处测得树的顶端A的仰角为37°,BC=10米,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80.tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,△ABC的顶点均在格点上,三个顶点的坐标分别是A(2,2),B(1,0),C(3,1).
(1)画出△ABC关于x轴对称的图形△A1B1C1
(2)画出将△ABC绕原点O按逆时针方向旋转90°所得作的△A2B2C2,并求出C2的坐标;
(3)在旋转过程中,点A经过的路径为弧$\widehat{A{A}_{2}}$,那么$\widehat{A{A}_{2}}$的长为$\sqrt{2}$π;
(4)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)|-3|+(-2)-2-($\sqrt{5}$+1)0-$\frac{1}{\sqrt{16}}$
(2)(x+y)(x-y)-(4x3y-8xy3)÷2xy.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.观察下列等式:
1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n=1008.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下面方程的变形中,正确的是(  )
A.3x-5=x+1移项,得3x-x=1-5B.$\frac{x}{3}$+$\frac{x}{4}$=1去分母,得4x+3x=1
C.2(x-1)+4=x去括号,得2x-2+4=xD.-5x=15的两边同除以-5,得x=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.当a为何值时,关于x的方程$\frac{x}{x-2}$-$\frac{2-x}{x}$-$\frac{2x+a}{x(2-x)}$=0只有一个实数根?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知a,b是直角三角形的两条直角边,且(a2+b2)(a2-8+b2)=-16,求这个直角三角形斜边的长.

查看答案和解析>>

同步练习册答案