精英家教网 > 初中数学 > 题目详情

【题目】如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.

(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2 , 若ADBC所在直线互相垂直,求的值.

【答案】
(1)

证明:∵GE是AB的垂直平分线,

∴GA=GB,

同理:GD=GC,

在△AGD和△BGC中,

GA=GB,

∠AGD=∠BGC,

GD=GC,

∴△AGD≌△BGC(SAS),

∴AD=BC;


(2)

证明:∵∠AGD=∠BGC,

∴∠AGB=∠DGC,

在△AGB和△DGC中,

∴△AGB∽△DGC,

又∵∠AGE=∠DGF,

∴∠AGD=∠EGF,

∴△AGD∽△EGF;


(3)

解:延长AD交GB于点M,交BC的延长线于点H,如图所示:

则AH⊥BH,

∵△AGD≌△BGC,

∴∠GAD=∠GBC,

在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,

∴∠AGB=∠AHB=90°,

∴∠AGE=∠AGB=45°,

又∵△AGD∽△EGF,


【解析】(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;
(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;
(3)延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.
此题考查了相似三角形的应用和垂直平分线性质,三角形相似,对应角相等,对应边成比例。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,P是第一象限角平分线上的一点,且P点的横坐标为3.把一块三角板的直角顶点固定在点P处,将此三角板绕点P旋转,在旋转的过程中设一直角边与x轴交于点E,另一直角边与y轴交于点F,若POE为等腰三角形,则点F的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与双曲线交于两点,且点的横坐标为

1)求的值;

2)若双曲线上一点的纵坐标为8,求的面积;

3)过原点的另一条直线交双曲线两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形。

(1)拼成的大正方形的面积与边长分别是多少?

(2)你能在下图3×3方格中,连接四个格点组成面积为5的正方形吗?

(3)能把十个小正方形组成的图形纸,剪开并拼成更大的正方形吗?若能,在下图中画出图形,并求出它的边长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,抛物线y= x2+2x与x轴相交于O、B,顶点为A,连接OA.

(1)求点A的坐标和∠AOB的度数;
(2)若将抛物线y= x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;
(3)在(2)的情况下,判断点C′是否在抛物线y= x2+2x上,请说明理由.
(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由. (参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为( ),对称轴是直线x= .)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.

(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(a2-4a+2)(a2-4a+6)+4进行因式分解的过程:

解:设a2-4a=y,则

原式=(y+2)(y+6)+4(第一步)

=y2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)该同学因式分解的结果是否彻底:________(彻底不彻底”);

(2)若不彻底,请你直接写出因式分解的最后结果:________;

(3)请你模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是
(  )

A.
B.
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,对角线ACBC相交于OEAB的中点,FDE的中点,GCF的中点, OHDEH , 过AAIDEI , 交BDJ , 交BCK , 连接BI

下列结论:①GAC的距离等于 ;②OH ;③BK AK;④∠BIJ=45°.其中正确的结论是
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

同步练习册答案