精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数的图象与反比例函数的图象交于AB两点.

(1)利用图中的条件,求反比例函数和一次函数的解析式;

(2)求△AOB的面积;

(3)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.

【答案】(1) , ;(2) ;(3) x或0<x<2

【解析】试题分析 将点代入可得反比例函数解析式,将点代入可得的值,即可得点的坐标,由坐标可得直线的解析式;
求得直线与轴的交点坐标,利用割补法可得三角形的面积;

由直线位于双曲线上方时对应的的范围即可得答案.

试题解析: 设反比例函数的解析式为

代入得:

∴反比例函数的解析式为

设一次函数的解析式为

代入

得:

将点 代入

得: 解得:

∴一次函数的解析式为:

在一次函数中,令得: ,解得:

时,一次函数的值小于反比例函数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示破残的圆形轮片上AB的垂直平分线交弧AB于点C交弦AB于点D.已知AB=24cmCD=8cm

1)求作此残片所在的圆(不写作法保留作图痕迹)

2)求残片所在圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】未来五年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )元
A.0.85×1012
B.8.5×1011
C.8.5×1012
D.85×1010

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:

①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,

其中,正确的个数有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的一个外角小于与它相邻的内角,则这个三角形是( )
A.锐角三角形
B.钝角三角形;
C.直角三角形
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线的函数表达式为,它与轴、轴的交点分别为A、B两点.

(1)求点A、B的坐标;

(2)设F是轴上一动点,⊙P经过点B且与轴相切于点F,设⊙P的圆心坐标为P(x,y),求y与之间的函数关系;

(3)是否存在这样的⊙P,既与轴相切,又与直线相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60°.

1ABC的度数;

(2)求证:AE是O的切线;

(3)当BC=4时,求劣弧AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为( )(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)

A. 8.1 B. 17.2 C. 19.7 D. 25.5

查看答案和解析>>

同步练习册答案