【题目】老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:
+(﹣3x2+5x﹣7)=﹣2x2+3x﹣6
(1)求所捂的多项式;
(2)若x是 x=﹣ x+3的解,求所捂多项式的值;
(3)若x为正整数,任取x几个值并求出所捂多项式的值,你能发现什么规律?
(4)若所捂多项式的值为144,请直接写出x的取值.
【答案】
(1)解:(﹣2x2+3x﹣6)﹣(﹣3x2+5x﹣7)
=﹣2x2+3x﹣6+3x2﹣5x+7
=x2﹣2x+1,
即所捂的多项式是x2﹣2x+1
(2)解:∵x是 x=﹣ x+3的解,
∴x=4,
∴x2﹣2x+1=42﹣2×4+1=9,
即若x是 x=﹣ x+3的解,所捂多项式的值是9
(3)解:当x=1时,x2﹣2x+1=1﹣2+1=0;
当x=2时,x2﹣2x+1=4﹣4+1=1;
当x=3时,x2﹣2x+1=9﹣6+1=4;
当x=4时,x2﹣2x+1=16﹣8+1=9,
由上可以发现规律是所捂多项式的值是代入的正整数x﹣1的平方
(4)解:若所捂多项式的值为144,x的取值是13.
∵144=122 ,
∴x的值是13
【解析】(1)已知两个多项式的和与其中一个多项式,求另一个多项式,则由和减去已知的多项式即可;(2)已知x是 x=﹣ x+3的解,解这个方程,x可求出,代入(1)中的结果计算即可;(3)通过代值可发现规律:所捂多项式的值是代入的正整数x﹣1的平方;(4)由(3)的规律即可求。
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是( )
A. 第一、三象限 B. 第二、四象限 C. 第一、二象限 D. 不能确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com