精英家教网 > 初中数学 > 题目详情

【题目】已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB.

(1)问题发现
如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为 , BD、AB、CB之间的数量关系为
(2)拓展探究
当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明.

(3)解决问题
当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB=

【答案】
(1)BD=AE,BD+AB= CB
(2)解:证明:如图2,过点C作⊥CB交MN于点E,

∵∠ACD=90°,

∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,

∴∠ACE=∠BCD,

∵DB⊥MN,

∴∠CAE=90°﹣∠AFB,∠D=90°﹣∠CFD,

∵∠AFB=∠CFD,

∴∠CAE=∠D,

∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∵∠ECB=90°,

∴△ECB是等腰直角三角形,

∴BE= CB,

∴BE=AE﹣AB=DB﹣AB,

∴BD﹣AB= CB;


(3)
【解析】解:(1)如图1,过点C作⊥CB交MN于点E,

∵∠ACD=90°,

∴∠ACE=90°﹣∠ACB,∠BCD=90°﹣∠ACB,

∴∠ACE=∠BCD,

∵DB⊥MN,

∴在四边形ACDB中,∠BAC+∠ACD+∠ABD+∠D=360°,

∴∠BAC+∠D=180°,

∵∠CE+∠BAC=180°,

∠CAE=∠D,

∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∵∠ECB=90°,

∴△ECB是等腰直角三角形,

∴BE= CB,

∴BE=AE+AB=DB+AB,

∴BD+AB= CB;

所以答案是:BD=AE,BD+AB= CB;(3)如图3,过点C作⊥CB交MN于点E,

(3)∵∠ACD=90°,

∴∠ACE=90°﹣∠DCE,

∠BCD=90°﹣∠DCE,

∴∠ACE=∠BCD,

∵DB⊥MN,

∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠CFD,

∵∠AFB=∠BFD,

∴∠CAE=∠D,

∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∵∠ECB=90°,

∴△ECB是等腰直角三角形,

∴BE= CB,

∴BE=AB﹣AE=AB﹣DB,

∴AB﹣DB= CB;

∵△BCE为等腰直角三角形,

∴∠BEC=∠CBE=45°,

∵∠ABD=90°,

∴∠DBH=45°

过点D作DH⊥BC,

∴△DHB是等腰直角三角形,

∴BD= BH=2,

∴BH=DH=

在Rt△CDH中,∠BCD=30°,DH=

∴CH= DH= × =

∴BC=CH﹣BH=

所以答案是:

【考点精析】根据题目的已知条件,利用勾股定理的概念和解直角三角形的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABBC,对角线ACBD相交于点EEBD中点,且ADBDAB2,∠BAC30°,则DC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,分别探究下面三个图形中∠P和∠A,∠C的关系,请你从所得三个关系中任意选出一个,说明你探究结论的正确性.

结论:(1___________________

2____________________

3_____________________

(4)选择结论____________,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平分平分,则 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1: .在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和直线BC相交于点B,连接AC,D. E. H分别在ABACBC,连接DEDH,FDH上一点,已知∠1+3=180°

(1)求证:∠CEF=EAD

(2)DH平分∠BDE,2=α,求∠3的度数.(α表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cm,AD=12cm,点PAD边上以每秒1cm的速度从点A向点D运动,点QBC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ有( )次平行于AB?

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: ,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD.

(1)作图,作∠A的平分线AE交CD于点E(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,判断△AED的形状并说明理由.

查看答案和解析>>

同步练习册答案