精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,∠C=90°,AC=8,BC=6.

(1)尺规作图:作BAC的角平分线AD(保留作图痕迹,不写作法);

(2)求AD的长.

【答案】1)如图见解析;(2

【解析】

(1)利用尺规作出∠BAC的平分线;

(2)作DEABE,设DE=CD=x,在RtBDE中,根据勾股定理构建方程求出x,再根据勾股定理即可解决问题;

(1)如图线段AD即为∠BAC的平分线;

(2)作DEABE.

∵∠DEA=C=90°,DAE=DAC,AD=AD,

∴△ADE≌△ADC,

AE=AC=8,DE=DC,设DE=DC=x.

AB==10,

BE=2,

RtBDE中,∵DE2+BE2=BD2

x2+22=(6﹣x)2

x=.

RtACD中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6AB两点,若反比例函数x>0)的图像与ABC有公共点,则k的取值范围是(

A. 2≤k≤9 B. 2≤k≤8 C. 2≤k≤5 D. 5≤k≤8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、FAC上,AD=BC,AD//BC,则添加下列哪个条件后,仍无法判定△ADF≌△CBE的是

A. DF=BE B. ∠D=∠B C. AE=CF D. DF//BE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,AB=AC,G为三角形外一点,且△GBC为等边三角形.

(1)求证:直线AG垂直平分BC;

(2)以AB为一边作等边△ABE(如图2),连接EG、EC,试判断△EGC是否构成直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OEAB于O,若BOD=40°,则不正确的结论是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,然后解答后面的问题.

我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数) 则有0<x<6.又为正整数,则 为正整数.

23互质,可知:x3的倍数,从而x=3,代入=2.

∴2x+3y=12的正整数解为

问题:

(1)请你写出方程2x+y=5的一组正整数解:_____

(2)若 为自然数,则满足条件的整数x值有_____

A、2 B、3 C、4 D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校百变魔方社团准备购买两种魔方.已知购买2个种魔方和6个种魔方共需130元,购买3个种魔方和4个种魔方所需款数相同.

(1)求这两种魔方的单价;

(2)结合社员们的需求,社团决定购买两种魔方共100个(其中种魔方不超过50个).某商店有两种优惠活动,如图所示.

请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,DAC中点,过点AAE∥BC,连结BE,∠EBD=∠CBD,BD=5,则BE的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.

(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;

(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);

(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.

查看答案和解析>>

同步练习册答案