精英家教网 > 初中数学 > 题目详情

如图,平行四边形ABCD中,AC=8,BD=6,AD=a,则a的取值范围是__.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.判断下列各式的值,何者最大?(  )
A.25×132-152B.16×172-182C.9×212-132D.4×312-122

查看答案和解析>>

科目:初中数学 来源:2016-2017学年四川达县万家中学下学期九年级第一次月考数学试卷(解析版) 题型:填空题

如图,直线y=kx+b经过A(﹣1,1)和B(﹣3,0)两点,则关于x的不等式组0<kx+b<﹣x的解集为_____________.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省八年级下学期第一次月考数学试卷(解析版) 题型:解答题

如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.

(1)求证:△BCF≌△BA1D.

(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省八年级下学期第一次月考数学试卷(解析版) 题型:填空题

若关于x的方程的解为正数,则m的取值范围是__.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省八年级下学期第一次月考数学试卷(解析版) 题型:单选题

化简的结果是(  )

A. B. C. D. 2(x+1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.把一张矩形的ABCD白纸,AB=3,BC=3$\sqrt{3}$,按图(一)沿AE折叠,使B落在AD边上的,再沿MN折使点A落在C处,则折痕MN长为(  )
A.6-2$\sqrt{3}$B.3$\sqrt{2}$-6C.6$\sqrt{3}$-6D.$\sqrt{3}$+$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.观察下列化简过程:
①$\sqrt{\frac{2}{3}}$=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{2}×\sqrt{3}}{\sqrt{3}×\sqrt{3}}$=$\frac{\sqrt{6}}{3}$
②$\frac{1}{\sqrt{18}}$=$\frac{1}{3\sqrt{2}}$=$\frac{1×\sqrt{2}}{3\sqrt{2}×\sqrt{2}}$=$\frac{\sqrt{2}}{6}$
③$\frac{1}{\sqrt{2}+1}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1
以上过程都是通过恒等值变形,将分母的根号(或根号中的分母)去掉,我们把这个过程叫做分母有理化,变形中分子分母分别乘的式子叫做它们的有理化因式,如①中的有理化因式是$\sqrt{3}$,②中的有理化因式是$\sqrt{2}$,③中的有理化因式是$\sqrt{2}$-1,解答下列问题:
(1)二次根式$\frac{1}{\sqrt{27}}$、$\sqrt{\frac{3}{8}}$、$\frac{3}{\sqrt{7}-2}$的有理化因式分别为$\sqrt{3}、\sqrt{2}、\sqrt{7}+2$;
(2)第(1)题中二次根式化简的结果分别为$\frac{\sqrt{3}}{9}、\frac{\sqrt{6}}{4}、\sqrt{7}+2$;
(3)计算:($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{99}+\sqrt{98}}$)×($\sqrt{99}$+1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,第①个图形中一共有1个矩形,第②个图形中一共有5个矩形,第③个图形中一共有11个矩形,…则第n个图形中一共有n2+n-1矩形.

查看答案和解析>>

同步练习册答案