精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数(k>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?

【答案】
(1)

【解答】解:∵在矩形OABC中,OA=3,OC=2,

∴B(3,2),

∵F为AB的中点,

∴F(3,1),

∵点F在反比例函数(k>0)的图象上,

∴k=3,

∴该函数的解析式为(x>0);


(2)

由题意知E,F两点坐标分别为E(,2),F(3,),

∴SEFA=AFBE=×k(3﹣k),

=k﹣k2

=(k2﹣6k+9﹣9)

=(k﹣3)2+

当k=3时,S有最大值.

S最大值=


【解析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;
(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,直线y= x+6与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;
(3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,过C点的切线CE垂直于弦AD于点E,连OD交AC于点F.
(1)求证:∠BAC=∠DAC;
(2)若AF:FC=6:5,求sin∠BAC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为(  )

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.

(1)求证:CD是⊙O的切线.
(2)若,求∠E的度数.
(3)连接AD,在2的条件下,若CD=,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S2>S2;②S2<S2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是(  )

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与直线AB相交于A(﹣3,0),B(0,3)两点.

(1)求这条抛物线的解析式;
(2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;
(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是(  )

A.8
B.10
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2 , 再依次连接△A2B2C2的三边中点得△A3B3C3 , …,则△A5B5C5的周长为

查看答案和解析>>

同步练习册答案