【题目】如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=-(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则An(n为正整数)的纵坐标为________________________________.(用含n的式子表示)
【答案】(-1)n+1(-)
【解析】
先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,),根据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发现点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.
过A1作轴于D1
,
∴△OA1E是等边三角形
和
过A2作轴于D2
∴△A2EF是等边三角形
设,则
在中,
解得(舍去),
经检验是方程的根
,
即A2的纵坐标为
过A3作轴于D3
同理得是等边三角形
设,则
中,
解得(舍),
经检验是方程的根
,
即A3的纵坐标为
……
∴(n为正整数)的纵坐标为
故答案为:(-1)n+1(-).
科目:初中数学 来源: 题型:
【题目】已知二次函数的图像如图所示,对称轴为直线,则下列结论正确的有( )
①;②方程的两个根是,;
③;④当时,随的增大而减小.
A.①②B.②③C.①④D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:
(1)求y与x之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线交轴于两点,与轴交于点,连接
求抛物线的解析式;
若是轴下方抛物线上的一点,且,请通过计算或推理判断与的位置关系:
在轴左侧的抛物线上是否存在与点不重合的点,使等于中的某个锐角? 若存在,请求出的值:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,BC=9, CA=12,∠ABC的平分线BD交AC与点D, DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连结EF,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣,x1x2=.
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m=,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴交于点C(0,3),其对称轴与轴交于点A(2,0).
(1)求抛物线的解析式;
(2)将抛物线适当平移,使平移后的抛物线的顶点为D(0,).已知点B(2,2),若抛物线与△OAB的边界总有两个公共点,请结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量(件)与销售单价(元)满足,设销售这种商品每天的利润为(元).
(1)求与之间的函数关系式;
(2)在保证销售量尽可能大的前提下,该商场每天还想获得2000元的利润,应将销售单价定为多少元?
(3)当每天销售量不少于50件,且销售单价至少为32元时,该商场每天获得的最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com