科目:初中数学 来源: 题型:
设点
和
是反比例函数
图象上的两个点,当x1<x2<
时,y1<y2,则一次函数y=-2x+k的图象不经过的象限是
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:初中数学 来源: 题型:
玉龙工艺品商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折
销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售
出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问
现在进行适当降价活动,且降价不超过8元,问每件工艺品降价多少元出售,
每天获
得的利润最大?获得的最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
观察下表
![]()
我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:
(1)第3格的“特征多项式”为 12x+9y ,第4格的“特征多项式”为 16x+16y ,第n格的“特征多项式”
为4nx+n2y(n为正整数);
(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,
①求x,y的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成
种不同的等腰三角形,为探究
之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形。所以,当
时,![]()
(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形
所以,当
时,![]()
(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形
所以,当
时,![]()
(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形
所以,当
时,![]()
综上所述,可得表①
|
| 3 | 4 | 5 | 6 |
|
| 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(2) 分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(只需把结果填在表②中)
|
| 7 | 8 | 9 | 10 |
|
|
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……
解决问题:用
根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设
分别等于
、
、
、
,其中
是整数,把结果填在表③中)
|
|
|
|
|
|
|
|
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(要求写出解答过程)
其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com