精英家教网 > 初中数学 > 题目详情
7.三个正整数的比是 1:2:4,它们的和是84,那么这三个数中最大的数是48.

分析 设这三个正整数为x、2x、4x,根据等量关系:三个数之和为84,可得出方程,解出即可.

解答 解:设这三个正整数为x、2x、4x,由题意得:
x+2x+4x=84,
解得:x=12,
所以这三个数中最大的数是4x=48.
故答案为:48.

点评 本题考查了一元一次方程的应用,解答本题的关键是设出未知数,找到等量关系,利用方程思想求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.下列四个等式中,正确的是(  )
A.($\sqrt{-2}$)2=-2B.(-$\sqrt{2}$)2=-2C.$\sqrt{(-2)^{2}}$=-2D.[$\sqrt{(-2)^{2}}$]2=4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知线段a和b的长分别是1和4,则a和b的比例中项为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为20$\sqrt{5}$m,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为130m.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.∠A=30.58°,用度、分、秒表示∠A的余角为59°25′12″.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图所示,∠AOB:∠BOC=3:2,OD平分∠BOC,OE平分∠AOC,且∠DOE=36°,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知线段AB和点O,画出线段AB关于点O的中心对称图形,保留必要的作图痕迹,并完成填空:
解:
(1)连结AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.
(2)连结CD.
线段CD即为所求.
观察作图结果,你认为线段AB与线段CD的位置关系是AB∥CD.
理由如下:
依作图过程可证△ABO≌△CDO.
证明三角形全等所依据的判定定理简称为SAS.
由三角形全等可得∠A=∠C.
从而根据内错角相等两直线平行判定出线段AB与CD的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,直线AB与CD相交于点O,OD平分∠BOE,∠FOD=90°,问OF是∠AOE的平分线吗?请你补充完整小红的解答过程.
探究:
(1)当∠BOE=70°时,
∠BOD=∠DOE=$\frac{1}{2}×70°=35°$,
∠EOF=90°-∠DOE=55°,
而∠AOF+∠FOD+∠BOD=180°,
所以∠AOF+∠BOD=180°-∠FOD=90°,
所以∠AOF=90°-∠BOD=55°,
所以∠EOF=∠AOF,OF是∠AOE的平分线.
(2)参考上面(1)的解答过程,请你证明,当∠BOE为任意角度时,OF是∠AOE的平分线.
(3)直接写出与∠AOF互余的所有角.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列四个实数中,是无理数的为(  )
A.$\frac{22}{7}$B.$\sqrt{0}$C.$\root{3}{-8}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案