精英家教网 > 初中数学 > 题目详情

【题目】已知A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限,已知点C的位置始终在一函数图象上运动,则这个函数解析式为(  )

A. y=﹣ B. y=﹣(x>0) C. y=﹣6x(x>0) D. y=6x(x>0)

【答案】B

【解析】

设点A的坐标为(a,),连接OC,则OC⊥AB,表示出OC,过点C作CD⊥x轴轴于点D,设出点C坐标,在RT△OCD中,利用勾股定理可得出x的值,继而得出y与x的函数关系式.

设A(a,),
∵点A与点B关于原点对称,
∴OA=OB,
∵△ABC为等边三角形,
∴AB⊥OC,OC=AO,
∵AO=,
,
过点C作CD⊥x轴于点D,
则可得∠AOD=∠OCD(都是∠COD的余角),
设点C的坐标为(x,y),则,即,
解得:,
在RT△COD中,,即,
代入,可得:,
,,
则xy=-6,
故可得:.
故选B..

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若二次函数y=﹣x2+4x+c的图象经过A(1,y1),B(﹣1,y2),C(2+ ,y3)三点,则y1、y2、y3的大小关系是(

A. y1<y2<y3 B. y1<y3<y2 C. y2<y3<y1 D. y2<y1<y3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 (1)如图1,等腰RtABC中,∠CAB=90°,点HBC边上,连AH,作等腰RtHFA,∠HFA=90°求证:AF=CF.

(2)如图2,等腰RtABC中,∠CAB=90°DBC上,ADAE,AD=AE,GCD中点,求证:AGBE

(3)如图3,等腰RtABC中,∠BAC=90°,过CCDAB, CD=8,连AD,AD上取一点E使AE=AB,连BEACF,若AF=9,则AD= .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AEBCEAFCDF,且∠EAF=60°,BE=2cmDF=3cm,试求平行四边形ABCD的周长及面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x(辆)的关系如图所示,当x≥8时,yx成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x应该满足的范围是(  )

A. x<32 B. x≤32 C. x>32 D. x≥32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,且BE=BD,连结AEDEDC

①求证:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=k1x+bx轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;m+n=0;SAOP=SBOQ④不等式k1x+b>的解集是x<﹣20<x<1,其中正确的结论的序号是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,MN分别是BCDC的中点,AM4AN3,且∠MAN60°,则AB的长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B两点的坐标分别为(0,6),(0,3),点Px轴正半轴上一动点,过点AAP的垂线,过点BBP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.

(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;

(2)当⊙Mx轴相切时,求点Q的坐标;

(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.

查看答案和解析>>

同步练习册答案