【题目】在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.
【答案】(1)理由见解析;(2);(3)6,理由见解析.
【解析】
试题分析:(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;
(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,在直角三角形AMD中,求出AM的长,即为DM的长,根据勾股定理求出GM的长,进而确定出DG的长,即为BE的长;
(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.
试题解析:(1)∵四边形ABCD和四边形AEFG都为正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE,
在△ADG和△ABE中,
,
∴△ADG≌△ABE(SAS),
∴∠AGD=∠AEB,
如图1所示,延长EB交DG于点H,
在△ADG中,∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°,
在△EDH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,
则DG⊥BE;
(2)∵四边形ABCD和四边形AEFG都为正方形,
∴AD=AB,∠DAB=∠GAE=90°,AG=AE,
∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,
在△ADG和△ABE中,
∴△ADG≌△ABE(SAS),
∴DG=BE,
如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,
∵BD为正方形ABCD的对角线,
∴∠MDA=45°,
在Rt△AMD中,∠MDA=45°,
∴cos45°=,
∵AD=2,
∴DM=AM=,
在Rt△AMG中,根据勾股定理得:GM=,
∵DG=DM+GM=,
∴BE=DG=;
(3)△GHE和△BHD面积之和的最大值为6,理由为:
对于△EGH,点H在以EG为直径的圆上,
∴当点H与点A重合时,△EGH的高最大;
对于△BDH,点H在以BD为直径的圆上,
∴当点H与点A重合时,△BDH的高最大,
则△GHE和△BHD面积之和的最大值为2+4=6.
科目:初中数学 来源: 题型:
【题目】如图,B处在A处的西南方向,C处在A处的南偏东15°方向,若∠ACB=90°,则C处在B处的( )
A.北偏东75°方向
B.北偏东65°方向
C.北偏东60°方向
D.北偏东30°方向
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况:
(1)利用图中提供的信息,补全下表:
(2)若把24分以上(含24分)记为”优秀”,两班各50名学生,请估计两班各有多少名学生成绩优秀;
(3)观察图中数据分布情况,请通过计算方差说明哪个班的学生纠错的得分情况更稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.
(1)求证:DE=DF;
(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是度.
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com