精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为(
A.
B.
C.
D.

【答案】D
【解析】解:连接EF,如图所示:
∵四边形ABCD是矩形,
∴AB=CD=3,AD=BC=2,∠A=∠D=90°,
∵点E为AD中点,
∴AE=DE=1,
∴BE= = =
在△ABE和△DCE中,
∴△ABE≌△DCE(SAS),
∴BE=CE=
∵△BCE的面积=△BEF的面积+△CEF的面积,
BC×AB= BE×FG+ CE×FH,
即BE(FG+FH)=BC×AB,
(FG+FH)=2×3,
解得:FG+FH=
故选:D.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】三个小球上分别标有数字﹣2,﹣1,3,它们除数字外其余全部相同,现将它们放在一个不透明的袋子里,从袋子中随机地摸出一球,将球上的数字记录,记为m,然后放回;再随机地摸取一球,将球上的数字记录,记为n,这样确定了点(m,n).
(1)请列表或画出树状图,并根据列表或树状图写出点(m,n)所有可能的结果;
(2)求点(m,n)在函数y=﹣ 的图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,游客在点A处做缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长. (参考数据:sin75°≈0.97,cos75°≈0.26, ≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y= x2+bx﹣ 的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)请直接写出点D的坐标:
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明用下面的方法求出方程2 ﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.

方程

换元法得新方程

解新方程

检验

求原方程的解

2 ﹣3=0

=t,则2t﹣3=0

t=

t= >0

= ,所以x=

x﹣2 +1=0

x+2+ =0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1 , 作正方形A1B1C1B2 , 延长C1B2交直线l于点A2 , 作正方形A2B2C2B3 , 延长C2B3交直线l于点A3 , 作正方形A3B3C3B4 , …,依此规律,则A2016A2017=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,下列几何体中主视图、左视图、府视图都相同的是( )

A.半球
B.圆柱
C.球
D.六棱柱

查看答案和解析>>

同步练习册答案