精英家教网 > 初中数学 > 题目详情

【题目】某地准备围建一个矩形苗圃园,其中一边靠墙,另外三边用周长为30米的篱笆围成.已知墙长为米,设苗圃园垂直于墙的一边长为米,苗圃园的面积为平方米.

1)直接写出的函数关系式;

2)若,求的取值范围;

3)当时,求的最大值.

【答案】(1);(2);(3)当墙长为时,菜园的最大面积为

【解析】

1)根据题意可以写出yx的函数关系式;

2)根据题意和a的值,可以求得x的取值范围;

3)根据题意和a的值,可以求得x的取值范围,然后根据(1)中的函数关系式即可解答本题.

1.

2)∵a=18,

∴解得.

3)∵

,抛物线开口向下,

∴当时,的增大而减小,

∵墙长

所以,当时,.

即当a=12时,y的最大值是108

答:当墙长为时,菜园的最大面积为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BC8,把△ABC沿着AC向上翻折得到△AECECAD边于点F,则点FAC的距离是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点PBA的延长线上,PD与⊙O相切,D为切点,若∠BCD125°,则∠ADP的大小为(

A.25°B.40°C.35°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是___m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿补偿额批发价生产成本价销售量大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量与销售单价之间的关系近似满足一次函数:已知这种节能灯批发价为每件12元,设它的生产成本价为每件m

(1)当时.

①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元?

②设所获得的利润为,当销售单价定为多少元时,每月可获得最大利润?

(2)物价部门规定,这种节能灯的销售单价不得超过30今年三月小明获得赢利,此时政府给该企业补偿了920元,若mx都是正整数,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线yax2+6x+cx轴于AB两点,交y轴于点C.直线yx+5经过点AC

1)求抛物线的解析式;

2)如图(2),若过点B的直线交直线AC于点M

BMAC时,过抛物线上一动点P(不与点BC重合),作直线BM的平行线交AC于点Q,若以点BMQP为顶点的四边形是平行四边形,求点P的横坐标;

连结BC,当直线BM与直线AC的夹角等于∠ACB2倍时,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点AB的坐标分别为(11)、(﹣11),把正方形ABCD绕原点O逆时针旋转45°得到正方形ABCD,则正方形ABCD与正方形ABCD重叠部分形成的正八边形的边长为(  )

A.2B.22C.42D.+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点经过原点,交轴正半轴于点.点上,,圆心的坐标为__________

查看答案和解析>>

同步练习册答案