【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(小时),两车之间的距离为(千米),图中的折线表示与的函数关系.
信息读取:
(1)甲、乙两地之间的距离为__________千米;
(2)请解释图中点的实际意义;
图像理解:
(3)求慢车和快车的速度;
(4)求线段所示的与之间函数关系式.
【答案】(1)900;(2)当两车出发4小时时相遇;(3)慢车的速度是75千米/时,快车的速度是150千米/时;(4)y=225x﹣900(4≤x≤6).
【解析】
(1)根据已知条件和函数图象可以直接写出甲、乙两地之间的距离;
(2)根据题意可以得到点B表示的实际意义;
(3)根据图象和题意可以分别求出慢车和快车的速度;
(4)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围.
(1)由图象可得:甲、乙两地之间的距离为900千米.
故答案为:900;
(2)图中点B的实际意义时当两车出发4小时时相遇;
(3)由题意可得:慢车的速度为:900÷12=75,快车的速度为:(900﹣75×4)÷4=150,即慢车的速度是75千米/时,快车的速度是150千米/时;
(4)由题可得:点C是快车刚到达乙地,∴点C的横坐标是:900÷150=6,纵坐标是:900﹣75×6=450,即点C的坐标为(6,450),设线段BC对应的函数解析式为y=kx+b.
∵点B(4,0),点C(6,450),∴,得:,即线段BC所表示的y与x之间的函数关系式是y=225x﹣900(4≤x≤6).
科目:初中数学 来源: 题型:
【题目】如图,将3个同样的正方体重叠放置在桌面上,每个正方体的6个面上分别写有-3、-2、-1、1、2、3,相对的两面上写的数字互为相反数,现在有5个面的数字无论从哪个角度都看不到,这5个看不到的面上数字的乘积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量Q(L)与行驶时间t(h)之间的函数关系如图所示.
(1)汽车行驶 h后加油,加油量为 L;
(2)求加油前油箱剩余油量Q与行驶时间t之间的函数关系式;
(3)如果加油站离目的地还有200km,车速为40km/h,请直接写出汽车到达目的地时,油箱中还有多少汽油?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平面直角坐标系如图,直线的经过点和点.
求m、n的值;
如果抛物线经过点A、B,该抛物线的顶点为点P,求的值;
设点Q在直线上,且在第一象限内,直线与y轴的交点为点D,如果,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的对角线相交于点,,.
(1)求证:四边形是菱形;
(2)若将题设中“矩形”这一条件改为“菱形”,其余条件不变,则四边形是__________形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面上有线段AB和点C,按下列语句要求画图与填空:
(1)作射线AC;
(2)用尺规在线段AB的延长线上截取BD=AC;
(3)连接BC
(4)有一只蚂蚁想从点A爬到点B,它应该沿路径(填序号)______(①AB,②)爬行最近,这样爬行所运用到的数学原理是_____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读思考
我们知道,在数轴上|a|表示数a所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q两点表示的数分别是﹣1和2,那么P,Q两点之间的距离就是 PQ=2﹣(﹣1)=3.
启发应用
如图,点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0
(1)求线段AB的长;
(2)如图,点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解,
①求线段BC的长;
②在数轴上是否存在点P使PA+PB=BC?若存在,直接写出点P对应的数:若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.
(1)若∠COE=40°,则∠BOD= .
(2)若∠COE=α,求∠BOD(请用含α的代数式表示);
(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com