分析 根据正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,求出BE=CF=DG=AH,根据SAS推出△EBF≌△FCG≌△GDH≌△HAB,根据全等三角形的性质得出EF=FG=GH=HE,∠AEH=∠EFB,求出∠HEF=90°,根据正方形的判定得出四边形EFGH的形状是正方形即可.
解答
证明:连接HG,GF,EF,HE,
∵四边形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,
∵AE=BF=CG=DH,
∴BE=CF=DG=AH,
∴△EBF≌△FCG≌△GDH≌△HAB,
∴EF=FG=GH=HE,∠AEH=∠EFB,
∵∠B=90°,
∴∠EFB+∠FEB=90°,
∴∠AEH+∠FEB=90°,
∴∠HEF=90°,
∵EF=FG=GH=HE,
∴四边形EFGH的形状是正方形,
∴EG=HF,且EG⊥HF.
点评 本题考查了全等三角形的性质和判定,正方形的性质和判定的应用,解此题的关键是推出∠HEF=90°和EF=FG=GH=HE,题目比较典型,难度适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com