精英家教网 > 初中数学 > 题目详情
7.已知:如图,△ABC≌△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线.求证:AD=A′D′.

分析 根据全等三角形的性质得出对应边和对应角相等,再利用全等三角形的判定证明即可.

解答 证明:∵△ABC≌△A′B′C′,
∴AB=A'B',BC=B'C',∠B=∠B',
∵AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线,
∴BD=B'D',
在△ABD与△A′B′D′,
$\left\{\begin{array}{l}{AB=A'B'}\\{∠B=∠B'}\\{BD=B'D'}\end{array}\right.$,
∴△ABD≌△A′B′D′,
∴AD=A'D'.

点评 本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知:2x3+ax+1能被x-1整除,求a.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.观察如图图形的特点:

有几组全等图形?请一一指出:1与6、2与12、3与5与11、4与9、7与10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.
①如图1,若∠BCA=90°,∠α=90°,则BE=CF;
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠ACB=180°,使①中的结论仍然成立,并说明理由.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段间数量关系的合理猜想:EF=BE+AF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.

(1)当直线MN绕点C旋转到图①的位置时,说明:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图②的位置时,说明:DE=AD-BE;
(3)当直线MN绕点C旋转到图③的位置时,试问DE,AD,BE具有怎样的等量关系?请直接写出这个等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图所示,已知等边△ABC中,AB=AC=BC,∠CAB=∠CBA=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知△ABC≌△A′B′C′,∠A=78°,∠B=55°,A′B′=15,则∠C=47°,AB=15.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.⊙O中,弦AB的长恰等于半径,则弧$\widehat{AB}$的度数是60度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简再求值:(a+2b)(2a-b)-(a+2b)2-(a-2b)(a+2b),其中a=-$\frac{1}{3}$,b=-3.

查看答案和解析>>

同步练习册答案