【题目】解答题
(1)如图1,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF;
(2)如图2,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,求∠CDA的度数.
【答案】
(1)证明:∵四边形ABCD是ABCD,
∴AB∥CD,AB=CD,
∵AE=CF,
∴BE=DF,
∴四边形BEDF是平行四边形,
∴DE=BF;
(2)解:连接OD,
则∠ODC=90°,∠COD=70°;
∵OA=OD,
∴∠ODA=∠A= ∠COD=35°,
∴∠CDA=∠CDO+∠ODA=90°+35°=125°.
【解析】(1)根据平行四边形的性质可证AB∥CD,AB=CD,又由已知可证BE=DF,即证四边形BEDF是平行四边形,故DE=BF;(2)连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=35°,从而根据∠CDA=∠CDO+∠ODA计算求解.
【考点精析】关于本题考查的平行四边形的性质和切线的性质定理,需要了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】.如图 1,AB∥CD,直线 EF 交 AB 于点 E,交 CD 于点 F,点 G 在 CD 上,点 P在直线 EF 左侧,且在直线 AB 和 CD 之间,连接 PE,PG.
(1) 求证: ∠EPG=∠AEP+∠PGC;
(2) 连接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度数.
(3) 如图 2,若 EF 平分∠PEB,∠PGC 的平分线所在的直线与 EF 相交于点 H,则∠EPG 与∠EHG之间的数量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答题
(1)如图1,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF;
(2)如图2,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,求∠CDA的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现在,苏宁商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.
(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?
(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?
(3)小张按合算的方案,把这台冰箱买下,如果商场还能盈利25%,这台冰箱的进价是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中结论正确的个数为( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x=1,y=,则x2+4xy+4y2的值是( )
A. 2 B. 4 C. 32 D. 12
【答案】B
【解析】解析:x2+4xy+4y2=(x+2y)2==4.故选B.
【题型】单选题
【结束】
9
【题目】下列因式分解,正确的是( )
A. x2y2-z2=x2(y+z)(y-z) B. -x2y+4xy-5y=-y(x2+4x+5)
C. (x+2)2-9=(x+5)(x-1) D. 9-12a+4a2=-(3-2a)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为( )
A.180m
B.260 m
C.(260 ﹣80)m
D.(260 ﹣80)m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,郑某把一块边长为a m的正方形的土地租给李某种植,他对李某说:“我把你这块地的一边减少5 m,另一边增加5 m,继续租给你,你也没有吃亏,你看如何”.李某一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李某有没有吃亏?请说明理由.
【答案】李某吃亏了,理由见解析.
【解析】试题分析:计算阴影部分面积和原正方形面积作比较.
试题解析:
解:李某吃亏了.理由如下:
∵(a+5)(a-5)=a2-25<a2,
∴李某少种了25 m2地,李某吃亏了.
【题型】解答题
【结束】
20
【题目】计算:(1)992-102×98;
(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD内接于⊙O,A是 的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且 .
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com