精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.
(1)判断DH与⊙O的位置关系,并说明理由;
(2)求证:H为CE的中点;
(3)若BC=10,cosC= ,求AE的长.

【答案】
(1)解:DH与⊙O相切.理由如下:

连结OD、AD,如图,

∵AB为直径,

∴∠ADB=90°,即AD⊥BC,

∵AB=AC,

∴BD=CD,

而AO=BO,

∴OD为△ABC的中位线,

∴OD∥AC,

∵DH⊥AC,

∴OD⊥DH,

∴DH为⊙O的切线


(2)证明:连结DE,如图,

∵四边形ABDE为⊙O的内接四边形,

∴∠DEC=∠B,

∵AB=AC,

∴∠B=∠C,

∴∠DEC=∠C,

∵DH⊥CE,

∴CH=EH,即H为CE的中点


(3)解:在Rt△ADC中,CD= BC=5,

∵cosC= =

∴AC=5

在Rt△CDH中,∵cosC= =

∴CH=

∴CE=2CH=2

∴AE=AC﹣CE=5 ﹣2 =3


【解析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5 ,在Rt△CDH中可计算出CH= ,则CE=2CH=2 , 然后计算AC﹣CE即可得到AE的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为(

A.4
B.3
C.2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.

(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).

(1)求抛物线的解析式;
(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).

(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 轴于A、B两点,以AB为直径的圆交 轴于C、D两点,则OC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=x+1的图象与反比例函数y2= 的图象交与A(1,M),B(n,﹣1)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO,BO.得出以下结论:
①点A和点B关于直线y=﹣x对称;
②当x<1时,y2>y1
③SAOC=SBOD
④当x>0时,y1 , y2都随x的增大而增大.
其中正确的是( )

A.①②③
B.②③
C.①③
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )

A.60 n mile
B.60 n mile
C.30 n mile
D.30 n mile

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,抛物线y=﹣ +bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,

(1)求抛物线的表达式;
(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;
(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.

查看答案和解析>>

同步练习册答案