【题目】△ABC是一块含有45的直角三角板,四边形DEFG是长方形,D、G分别在AB、AC上,E、F在BC上。BC=16,DG=4,DE=6,现将长方形 DEFG向右沿BC方向平移,设水平移动的距离为d,长方形与直角三角板的重叠面积为S,
(1)当水平距离d是何值时,长方形 DEFG恰好完全移出三角板;
(2)在移动过程中,请你用含有d的代数式表示重叠面积S,并写出相应的d的范围。
【答案】(1)10;(2)当0<d≤4时,S=24- ;当4<d≤6时,S=32-4d;当6<d≤10时,S= ;当10<d时,S=0.
【解析】
(1)要使长方形完全移出,则点E平移到了点C处,此时d=EC,由等腰直角三角形的性质可知∠B=45°,从而得到BE=DE=6.再用计算BC-BE的值即可.
(2)分三种情况依次画出图形,再结合图形进行计算即可.
解:(1)∵△ABC是等腰直角三角形,
∴∠B=∠C=45.
∵四边形DEFG是长方形,
∴∠DEF=∠GFE=90°.
∵∠DEF+∠BED=180°.
∴∠BED=90°.
∴BE=DE=6.
∵BE+CE=BC=16,
∴CE= BC-BE=16-6=10.
∴当水平距离d是10时,长方形 DEFG恰好完全移出三角板;
(2)①当0<d≤4时,如图1所示,
∵∠GNM=∠FNC=∠C=45°,∠G=90°,
∴GN=GM=d.
∴S=长方形DEFG的面积-△GMN的面积
=24- ;
②当4<d≤6时,如图2所示,
依题意可知:BE=6+d,FC=6-d.
∵BC=16,
∴EC=16-BE=10-d.
∵∠C=45°,
∴ME= EC =10-d.FN= FC=6-d.
∴S=△MEC面积-△FCN的面积
=
= (10-d+6-d)(10-d-6+d)
=32-4d.
③当6<d≤10时,如图2所示,
∵EH=EC=10-d
∴S=
=
④当10<d时,长方形DEFG与△ABC没有重叠部分,
∴S=0.
综上所述,当0<d≤4时,S=24- ;当4<d≤6时,S=32-4d;当6<d≤10时,S= ;当10<d时,S=0.
科目:初中数学 来源: 题型:
【题目】已知:数轴上有A、B、C三个点,它们表示的数分别是a、b和8,O是原点,且(a+20)2+|b+10|=0.
(1)填空:a= ,b= ;
(2)若将数轴折叠,使得点A与点C重合,则点B与数 表示的点重合;
(3)动点M在数轴上运动,是否存在点M使得MC+MB=20,若存在,请求出点M对应的数;若不存在,请说明理由;
(4)现有动点P、Q分别从A、B两点出发,点P以每秒3个单位长度的速度向点C移动,同时点Q以每秒1个单位长度的速度向点C移动.设点P移动的时间为t秒,问:
①当t为多少时,点P追上点Q?
②用含t的代数式表示线段PQ的长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】移动支付快捷高效,中国移动支付在世界处于领先水平,为了解人们平时最喜欢用哪种,移动支付支付方式,为此在某步行街,使用某app,软件对使用移动支付的行人进行随机抽样调查,设置了四个选项,支付宝,微信,银行卡,其他移动支付(每人只选一项),以下是根据调查结果分别整理的不完整的条形统计图和扇形统计图.
请你根据下列统计图提供的信息,完成下列问题.
(1)这次调查的样本容量是 ;
(2)请补全条形统计图;
(3)求在此次调查中表示使用微信支付的扇形所对的圆心角的度数.
(4)若某天该步行街人流量为10万人,其中40%的人购物并选择移动支付,请你依据此次调查获得的信息,估计一下当天使用银行卡支付的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两个工程队承包了地铁某标段全长3900米的施工任务,分别从南,北两个方向同时向前掘进。已知甲工程队比乙工程队平均每天多掘进0.4米经过13天的施工两个工程队共掘进了156米.
(1)求甲,乙两个工程队平均每天各掘进多少米?
(2)为加快工程进度两工程队都改进了施工技术,在剩余的工程中,甲工程队平均每天能比原来多掘进0.4米,乙工程队平均每天能比原来多掘进0.6米,按此施工进度能够比原来少用多少天完成任务呢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题:
(1)用含a、b的代数式表示小江家的住房总面积S;
(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含a、b的代数式表示铺设地砖的总费用W;
(3)在(2)的条件下,当a=6,b=4时,求W的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,货轮A在航行过程中,发现灯塔B在它北偏东60°的方向上,货轮C在它南偏东30°方向上.则下列结论:①∠NAB=60°;②∠WAC=120°;③图中∠NAC的补角有两个,分别是∠SAC和∠EAB;④图中有4对互余的角,其中正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直接写出结果:
(1)(﹣3)4= ,
(2)|﹣|= ,
(3)﹣9+5= ,
(4)﹣12+32= ,
(5)﹣8﹣3= ,
(6)(﹣2)3÷0.25×0= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com