【题目】如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。
【答案】1或2
【解析】
当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。
如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。
易证△BDH是等边三角形,DH=BD, ∠FDH=∠EDB ,DF=DE
∴△FDH≌△EDB
∴FH=BE,∠FHD=∠B=60°
在等边△BDH中∠DHB=60°
∴∠CHF=60°
∴MH=MH,∠CHM=∠MHD=60°,DH=CH,
∴△CHM≌△DHM
∴CM=DM,
∵ CM=DM,CH=BH
∴ MH//BD,
∵CD⊥AB
∴MH⊥CD
∴∠CMF=90°
∴
∴
∴
BE==1
同理可证,当DF在CD左侧时
BE==2
综上所诉,BE=1或2
科目:初中数学 来源: 题型:
【题目】已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.
(1)求抛物线的解析式和顶点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(﹣,0),点B的坐标为(0,3).
(1)求过A,B两点直线的函数表达式;
(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:
平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直
线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
数学探究:
点C的坐标为______;
求点E的坐标及直线BE的函数关系式;
若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.
证明:∵ DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°( )
∴DE∥AB(_________ ___)
∴∠2=____ (__________ ___________)
∠1= (____________ _________)
又∵∠1=∠2(_____________________)
∴∠A=∠3(_____________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程 (m-1)x-mx+1=0。
(1)证明:不论m为何值时,方程总有实数根;
(2)若m为整数,当m为何值时,方程有两个不相等的整数根。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6 cm,AC=10 cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).
(1)求证:四边形ACFD是平行四边形.
(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?
(3)将Rt△ABC向左平移4 cm,求四边形DHCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC是一块含有45的直角三角板,四边形DEFG是长方形,D、G分别在AB、AC上,E、F在BC上。BC=16,DG=4,DE=6,现将长方形 DEFG向右沿BC方向平移,设水平移动的距离为d,长方形与直角三角板的重叠面积为S,
(1)当水平距离d是何值时,长方形 DEFG恰好完全移出三角板;
(2)在移动过程中,请你用含有d的代数式表示重叠面积S,并写出相应的d的范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC中,∠C=90°.
(1)如图1,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的长;
(2)如图2,请利用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于FB(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注) .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com