精英家教网 > 初中数学 > 题目详情
10.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD的反向延长线交y轴负半轴于点E,双曲线$y=\frac{k}{x}({x>0})$的图象经过点A,若S△BEC=3,则k等于(  )
A.12B.6C.3D.2

分析 先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.

解答 解:∵BD为Rt△ABC的斜边AC上的中线,
∴BD=DC,∠DBC=∠ACB,
又∵∠DBC=∠EBO,
∴∠EBO=∠ACB,
又∵∠BOE=∠CBA=90°,
∴△BOE∽△CBA,
∴$\frac{OB}{BC}$=$\frac{OE}{AB}$,即BC×OE=BO×AB.
又∵S△BEC=3,
∴$\frac{1}{2}$BC•EO=3,
即BC×OE=6=BO×AB=|k|.
又∵反比例函数图象在第一象限,k>0.
∴k等于6.
故选B.

点评 本题考查的是反比例函数综合题,此题主要涉及到反比例函数y=$\frac{k}{x}$中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=$\frac{1}{2}$|k|.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.在平面直角坐标系中,A、B两点的坐标分别为A(1,2),B(5,4),那么A、B两点之间的距离为AB=2$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图是某市两个小区的大致位置示意图,图中点A表示的是茗茗家所居住的小区,点B表示的是茗茗奶奶家所居住的小区,按照先列后行的顺序,点A和点B所在的位置可以表示为(  )
A.(6,5)和(3,4)B.(5,6)和(3,4)C.(6,5)和(4,3)D.(5,6)和(4,3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知甲乙两商店的标价都是每本1元,甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第一本按标价的80%卖.
(1)小明要买20本时,到哪个商店较省钱?
(2)买多少本时给两个商店付相等的钱?
(3)小明现有40元钱,最多可买多少本?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)$|{\sqrt{2}-\sqrt{3}}|+\root{3}{8}+2(\sqrt{3}-1)$
(2)$\root{3}{{(-3){\;}^3}}+((-2){)^2}-\sqrt{9}+|{\sqrt{3}-2}|-{({\sqrt{5}})^2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列不是三棱柱展开图的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.以A为顶角顶点的等腰三角形ABC和等腰三角形ADE,D在BC边上,E在AB边上,F为线段AD上一点,连接FC,∠BDE=$\frac{1}{2}$∠FCA.
(1)如图1,若AB=$\sqrt{6}$,∠BAC=30°,求S△ABC
(2)如图1,求证:FA=FC;
(3)如图2,延长CF交AB于G,延长AB到M使GM=AC,连接CM,∠BAD=∠BCG,N是GC的中点,探究AN与CM之间的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在△ABC中,∠ACB=90°,AC=BC,AD⊥MN于D,BE⊥MN于E;
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE.
(2)当直线MN绕点C旋转到图2的位置时,△ADC与△CEB还会全等吗?请直接回答会(填会或不会);请直接猜想此时线段DE,AD,BE之间的数量关系是DE=AD-BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.观察下列各式的规律:
1×2×3×4+1=(1×4+1)2;2×3×4×5+1=(2×5+1)2;3×4×5×6+1=(3×6+1)2;…
①写出第五个式子5×6×7×8+1=(5×8+1)2
②写出第n个式子,并用所学知识说明理由.

查看答案和解析>>

同步练习册答案