【题目】如图,直角坐标系中,三角形ABC的顶点都在网格点上,C点的坐标为(1,2).
(1)直接写出点A、B的坐标.
(2)点P(a,b)是△ABC内任意一点,把△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A'B'C',点P的对应点为P',则点P'的坐标是 .
(3)求三角形ABC的面积.
科目:初中数学 来源: 题型:
【题目】2018年4月29日在瑞安外滩举行了“微马”活动,本次活动分“微马组,体验跑组,欢乐家庭跑组”三种赛程,其中“欢乐家庭跑组”蔡塞家庭只能以“二大一小”或“一大一小”的形式参加,参赛人数共100人.
(1)若参加“欢乐家庭跑组”的大人人数是小孩人数的1.5倍,问:“二大一小”和“一大一小”的组数分别有几组?
(2)若“二大一小”和“一大一小”的组数不相同且相差不超过5组,则本次比赛中参加 “欢乐家庭跑组”共有 组(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:
①旋转角的度数;
②线段OD的长;
③∠BDC的度数.
(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.
篮球 | 排球 | |
进价(元/个) | 80 | 50 |
售价(元/个) | 95 | 60 |
求:(1)购进篮球和排球各多少个?
(2)销售6个排球的利润与销售几个篮球的利润相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点D、E分别在AB、AC上,要得到△ABE≌△ACD,可添加条件( )
A. ∠A=∠AB. ∠ABC=∠ACBC. BE=CDD. AD=AE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠D应分别是20°和30°.
(1)李叔叔量得∠BCD=142°,根据李叔叔量得的结果,你能断定这个零件是否合格?请解释你的结论.
(2)你知道∠B、∠D、∠BCD三角之间有何关系吗?请写出你的结论(不需说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的边平行于坐标轴,对角线BD经过坐标原点,点C在反比例函数y=的图象上.若点A的坐标为(﹣2,﹣2),则k=( )
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com