精英家教网 > 初中数学 > 题目详情
7.设∠BAC=α(0°<α<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.
(1)如图1所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.
①小棒能无限摆下去吗?答:能.(填“能”或“不能”)
②若AA1=A1A2=A2A3,则α=22.5度;
(2)如图2所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,若只能摆放4根小棒,求α的范围.

分析 (1)本题需先根据已知条件∠BAC=α(0°<α<90°)小棒两端分别落在两射线上,从而判断出能继续摆下去;
(2)利用等腰直角三角形的性质求解即可;
(3)求出第三根小木棒构成的三角形,然后根据三角形的内角和定理和外角性质列出不等式组求解即可.

解答 解:(1)∵根据已知条件∠BAC=α(0°<α<90°)小棒两端能分别落在两射线上,
∴小棒能继续摆下去.
故答案为:能;

(2)∵A1A2=A2A3,A1A2⊥A2A3
∴∠A2A1A3=45°,
∴∠AA2A1+∠α=45°,
∵∠AA2A1=∠α,
∴∠α=22.5°;
故答案为:22.5;

(3)∵只能摆放4根小木棒,
∴$\left\{\begin{array}{l}{4α<90°}\\{5α≥90°}\end{array}\right.$,
解得18°≤α<22.5°.

点评 本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,(3)列出不等式组是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:
(1)当a=$\frac{1}{10}$时,求$\frac{a+1}{{a}^{2}-1}$-$\frac{a+1}{1-a}$的值;
(2)设x=3y,求$\frac{4xy}{{x}^{2}-{y}^{2}}$-$\frac{x+y}{x-y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.关于x,y的方程组$\left\{\begin{array}{l}{x-y=a+3}\\{2x+y=5a}\end{array}\right.$,当a满足什么条件时,x+y>0?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解不等式组$\left\{\begin{array}{l}{2x+2<4}\\{3x-1≥5}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知等边△AOB的顶点O与原点重合,点A的坐标为(0,2$\sqrt{3}$),点P(t,0)为x轴上一动点(不与O重合).连结AP,将AP绕点A逆时针旋转60°得到线段AQ,连结QB并延长交x轴于点C.过Q作x轴的垂线,垂足为D.
(1)直接写出点B的坐标,并求当t=4时,BQ的长度.
(2)当t>0时,求△QCP的面积S与t的函数关系式.
(3)在直线QD上存在点M,使△BPM成为等腰直角三角形,请直接写出所有符合条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求反比例函数的表达式.
(2)在x轴上存在一点P,使|PA-PB|最大,请直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知任意三角形的内角和为180°,试利用多边形中过某一顶点的对角线的条数,探求多边形内角和公式.
(1)如图所示,一个四边形可以分成2个三角形;于是四边形的内角和为360°;
(2)一个五边形可以分成3个三角形;于是五边形的内角和为540°;
(3)按此规律,n(n≥3)边形可分成多少个三角形?n边形的内角和是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解分式方程:$\frac{2-x}{x-3}=1+\frac{1}{3-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在下面两个集合中各放有一些写着代数式的卡片,请你分别从左、右两个集合中各选出一个代数式进行乘法运算.
(1)要求运算结果不含有一次项;请列式并计算.
(2)要求能用完全平方公式计算,请列式并计算.

查看答案和解析>>

同步练习册答案