【题目】和
都是等腰直角三角形,
.
(1)如图1,点、
分别在
、
上,则
、
满足怎样的数量关系和位置关系?(直接写出答案)
(2)如图2,点在
内部,点
在
外部,连结
、
,则
、
满足怎样的数量关系和位置关系?请说明理由.
(3)如图3,点、
都在
外部,连结
、
、
、
,
与
相交于
点.已知
,
,设
,
,求
与
之间的函数关系式.
【答案】(1)BD=CE,BD⊥CE;(2)BD=CE,BD⊥CE;证明见解析;(3)y=40-x.
【解析】
(1)根据等腰直角三角形的性质解答;
(2)延长BD,分别交AC、CE于F、G,证明△ABD≌△ACE,根据全等三角形的性质、垂直的定义解答;
(3)先证明∠BAD=∠CAE,再证明△ABD≌△ACE,可得∠BHC =90°,最后利用勾股定理计算即可.
(1)∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,
∴BD=CE,BD⊥CE;
(2)BD=CE,BD⊥CE,
理由如下:延长BD,分别交AC、CE于F、G,
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∵∠BAD=∠BAC-∠DAC,∠CAE=∠DAE-∠DAC
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠AFB=∠GFC,
∴∠CGF=∠BAF=90°,即BD⊥CE;
(3)∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∵∠BAD=∠BAC+∠DAC,∠CAE=∠DAE+∠DAC,
∴∠BAD=∠CAE,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠AOB=∠HOC,
∴∠BHC=∠BAC=90°,
∴CD2+EB2=CH2+HB2+EH2+HD2=BC2+DE2
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE
∵,
∴BC2=32,DE2=8
∵,
∴x+y=32+8
∴y=40-x.
科目:初中数学 来源: 题型:
【题目】如图,在某隧道建设工程中,需沿方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点
在直线
上,现在
上取一点
,
外取一点
,测得
,
,
.求开挖点
到点
的距离.
(精确到米)参考数据:
,
,
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(0,-3),B(3,-2),C(2,-4).
(1)在图中作出△ABC关于x轴对称的△A1B1C1.
(2)点C1的坐标为: .
(3)△ABC的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人同时从相距千米的
地匀速前往
地,甲乘汽车,乙骑电动车,甲到达
地停留半个小时后按原速返回
地,如图是他们与
地之间的距离
(千米)与经过的时间
(小时)之间的函数图像.
(1) ,并写出它的实际意义 ;
(2)求甲从地返回
地的过程中
与
之间的函数表达式,并写出自变量
的取值范围;
(3)已知乙骑电动车的速度为千米/小时,求乙出发后多少小时与甲相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上,如果BC=5,△ABC的面积是10,那么这个正方形的边长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的是( )
A.三角形的三条高线相交于三角形内一点
B.等腰三角形的中线与高线重合
C.三边长为的三角形为直角三角形
D.到线段两端距离相等的点在这条线段的垂直平分线上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使三角形AMN周长最小时,则∠MAN的度数为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行羽毛球比赛,甲发出一个十分关键的球,出手点为,羽毛球距地面高度
(米)与其飞行的水平距离
(米)之间的关系式为
.如图,已知球网
距原点
米,乙(用线段
表示)扣球的最大高度为
米,设乙的起跳点
的横坐标为
,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则
的取值范围是( )
A. . B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com