精英家教网 > 初中数学 > 题目详情

【题目】已知如图抛物线y=ax2+bx+c,下列式子正确的是(
A.a+b+c<0
B.b2﹣4ac<0
C.c<2b
D.abc>0

【答案】C
【解析】解:A、把(1,0)代入得:a+b+c>0,故本选项错误; B、∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0
故本选项错误;
C、∵a<0,∴c=b﹣a<2b,故本选项正确;
D、∵a<0,﹣ >0,c>0,
∴b>0,
∴abc<0,故本选项错误.
故选C.
【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB4BC5,点E在边CD上,以B为坐标原点,BA所在直线为y轴,BC所在直线为x轴,建立平面直角坐标系A(04).以AE所在直线为折痕折叠长方形ABCD,点D恰好落在BC边上的F点.

(1)求点F的坐标;

(2)求点E的坐标;

(3)AE上是否存在点P,使PBPF最小?若存在,作出点P的位置,并求出PBPF的最小值;不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水阶梯计费方式,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,请你根据统计图解答下列问题:

(1)此次抽样调查的样本容量是_____

(2)补全频数分布直方图,并求扇形图中“15吨~20部分的圆心角度数;

(3)用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2008年5月12日四川汶川地区发生8.0级特大地震.举国上下通过各种方式表达爱心.某企业决定用p万元援助灾区n所学校,用于搭建帐篷和添置教学设备.根据各校不同的受灾情况,该企业捐款的分配方案是:所有学校得到的捐款数都相等,到第n所学校时捐款恰好分完,捐款的分配方法如下表所示.(其中p,n,a都是正整数)根据以上信息,解答下列问题:
(1)写出p与n的关系式;
(2)当p=125时,该企业能援助多少所学校?
(3)根据震区灾情,该企业计划再次提供不超过20a万元的捐款,按照原来的分配方案援助其它学校.若a由(2)确定,则再次提供的捐款最多又可以援助多少所学校?

分配顺序

分配数额(单位:万元)

帐篷费用

教学设备费用

第1所学校

5

剩余款的

第2所学校

10

再剩余款的

第3所学校

15

再剩余款的

第(n﹣1)所学校

5(n﹣1)

再剩余款的

第n所学校

5n

0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读图1的情景对话,然后解答问题:
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是命题(填“真”或“假”)
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图2,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆 的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE. ①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:

请解答以下问题:

(1)把上面的频数分布表和频数分布直方图补充完整;

(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?

(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起其中,

,则的度数为______

,求的度数;

猜想的数量关系,并说明理由.

且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出角度所有可能的值不必说明理由,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BE平分

BC平行吗?请说明理由;

EF的位置关系如何?为什么?

解:理由如下:

平角的定义

已知

____________

______

EF的位置关系是______

平分已知

角平分线的定义

已知

______等量代换

____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上,先从中随机的抽取一张卡片(不放回),将该卡片正面上的数字作为十位数字,再随机的抽取一张卡片,将该卡片正面上的数字作为个位数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.

查看答案和解析>>

同步练习册答案