精英家教网 > 初中数学 > 题目详情

【题目】x满足(5-x)(x-2=2,求(x-52+2-x2的值;

解:设5-x=ax-2=b,则(5-x)(x-2=ab=2a+b=5-x+x-2=3

所以(x-52+2-x2=5-x2+x-22=a2+b2=a+b2-2ab=32-2×2=5

请仿照上面的方法求解下面的问题

1)若x满足(9-x)(x-4=4,求(9-x2+x-42的值;

2)已知正方形ABCD的边长为xEF分别是ADDC上的点,且AE=2CF=4,长方形EMFD的面积是63,分别以MFDF为边作正方形,求阴影部分的面积.

【答案】117;(232.

【解析】

1)设(9-x=a,(x-4=b,根据已知等式确定出所求即可;
2)设正方形ABCD边长为x,进而表示出MFDF,求出阴影部分面积即可.

解:(1)设9-x=ax-4=b,则(9-x)(x-4=ab=4a+b=9-x+x-4=5

∴(9-x2+x-42=a2+b2=a+b2-2ab=52-2×4=17

2)∵正方形ABCD的边长为x

DE=x-2DF=x-4

x-2=ax-4=b

S正方形EMFD=ab=63a-b=x-2-x-4=2

那么(a+b2=a-b2+4ab=256,得a+b=16

∴(x-22-x-42=a2-b2=a+b)(a-b=32

即阴影部分的面积是32

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,点DE分别在ACBC上,且CD·BCAC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与ABBC分别交于点FG

(1)求证:AC是⊙E的切线;

(2)若AF=4,CG=5,

①求⊙E的半径;

②若Rt△ABC的内切圆圆心为I,则IE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降,如图,根据题中相关信息回答下列问题:

(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;

(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?

(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.

(1)求证:AD=AF;

(2)求证:BD=EF;

(3)试判断四边形ABNE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,点DBC的中点,BD=ABADBC

1)如图1,求∠BAD的度数;

2)如图2,点EBC上一点,点FAC上一点,连接AEBF交于点G,若∠AGF=60°,求证:BE=CF

3)如图3,在(2)的条件下,点GBF的中点,点HAG上一点,延长BHAC于点KAK=HKBMAEAE延长线于点MBG=9HM=10,求线段AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是射线BE上一点,过ACABE交射线BF于点C,ADBF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点BF为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF

1)四边形ABEF_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果)

2AEBF相交于点O,若四边形ABEF的周长为40BF=10,则AE的长为________∠ABC=________°.(直接填写结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强学生的交通安全意识,某中学和交警大队联合举行了我当一日小交警活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,是角平分线,过点,交边的延长线于点.

(1)求证:是等腰三角形;

(2)的长.

查看答案和解析>>

同步练习册答案