精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,以点C为坐标原点,点A(0,﹣1)B(20),将ABC绕点A顺时针旋转90°

1)在图中画出旋转后的AB′C′,并写出点B′C′的坐标;

2)已知点D(3,﹣2),在x轴上求作一点P(注:不要求写出P点的坐标),使得PC′+PD的值最小,并求出PC′+PD的最小值;

3)写出ABC在旋转过程中,线段AB扫过的面积   

【答案】1)见解析,(11)(1,﹣1);(2)见解析,;(3

【解析】

1)依据△ABC绕点A顺时针旋转90°,即可得到旋转后的△ABC′,并写出点B′、C′的坐标;

2)点B'与点C'关于x轴对称,连接B'Dx轴于点P,则PC+PD的值最小,依据勾股定理即可得到PC+PD的最小值;

3)依据扇形的面积计算公式,即可得到线段AB扫过的面积.

解:(1)如图所示,AB′C′即为所求,点B′C′的坐标分别为(11)和(1,﹣1);

2)如图所示,点B'与点C'关于x轴对称,连接B'Dx轴于点P,则PC′+PD的值最小,

PC′+PD的最小值为

3)线段AB扫过的面积为:

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,且ABmm为常数),点C的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CDAB于点E

1)当DCAB时,则   

2)①当点D上移动时,试探究线段DADBDC之间的数量关系;并说明理由;

②设CD长为t,求△ADB的面积St的函数关系式;

3)当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1∶的斜坡向上走到点F时,DF正好与水平线CE平行.

(1)求点F到直线CE的距离(结果保留根号);

(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线yx2bxcx轴于点AB,点B的坐标为(40),与y轴于交于点C(0,﹣2)

1)求此抛物线的解析式;

2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;

3)在(2)的条件下,设抛物线对称轴x轴于点H,△ABD的外接圆圆心为M(如图1),

①求点M的坐标及⊙M的半径;

②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点Q运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=ax2﹣2x+1和y=ax+a(a是常数,且a0)在同一直角坐标系中的图象可能是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图RtABC中,∠ACB90°,∠B30°AC1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP12;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP22+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP33+按此规律继续旋转,直到点P2020为止,则AP2020等于_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?

(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75≈1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一内部装有水的直圆柱形水桶,桶高;另有一直圆柱形的实心铁柱,柱高,直立放置于水桶底面上,水桶内的水面高度为,且水桶与铁柱的底面半径比为.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形.RtABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).

(1)先将RtABC向右平移5个单位,再向下平移1个单位后得到RtA1B1C1.试在图中画出图形RtA1B1C1,并写出A1的坐标;

(2)将RtA1B1C1绕点A1顺时针旋转90°后得到RtA2B2C2,试在图中画出图形RtA2B2C2.并计算RtA1B1C1在上述旋转过程中C1所经过的路程.

查看答案和解析>>

同步练习册答案