【题目】对每个数位数字均不为零且互不相等的一个三位正整数,若将的十位数字与百位数字交换位置,得到一个新的三位数,我们称为的“置换数”,如:的“置效为“”;若由的百位、十位、个位上的数字任选两个组成一个新的两位数,所有新的两位数之和记为,我们称为的“行生数”.如:因为所以的“衍生数”为.
(1)直接写出的“置换数”,并求的“衍生数”;
(2)对每个数位数字均不为零且互不相等的一个三位正整数,设十位数字为,若的“衍生数”与的“置换数”之差为,求.
【答案】(1)897;528;(2)814
【解析】
(1)直接根据“置换数”和“衍生数”的定义解答即可;
(2)设x的百位数字为a,各位数字为b,根据的“衍生数”与的“置换数”之差为列出关于a和b的二元一次方程,结合a和b是互不相等的正整数求解即可.
(1)的“置换数”是:897, 的“衍生数”是:98+97+89+87+78+79=528;
(2)设x的百位数字为a,各位数字为b,则 的“衍生数”是10+a+10+b+10a+1+10a+b+10b+1+10b+a=22a+22b+22;x 的“置换数”是100+10a+b,由题意得,
22a+22b+22-100-10a-b=102,
即4a+7b=60,
∵a和b是互不相等的正整数,
∴a=8,b=4,
∴x=814.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列材料,然后解答问题:
材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.
一般地,从n个不同的元素中选取m个元素的排列数记作Anm.
Anm=n(n﹣1)(n﹣2)(n﹣3)…(n﹣m+1)(m≤n)
例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.
材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为.
一般地,从n个不同的元素中取出m个元素的组合数记作Cnm,
Cnm=(m≤n)
例:从6个不同的元素选3个元素的组合数为:.
问:(1)从某个学习小组8人中选取3人参加活动,有 种不同的选法;
(2)从7个人中选取4人,排成一列,有 种不同的排法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)若AB//x轴,求t的值;
(2)当t=3时,坐标平面内有一点M(不与A重合),使得以M、P、B为顶点的三角形和△ABP全等,请求出点M的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点O作BC的平行线交AB于M点,交AC于N点,则△AMN的周长为( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有 人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是 度.
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国海军亚丁湾护航十年,中国海军被亚丁湾上来往的各国商船誉为“值得信赖的保护伞”如图,在一次护航行动中,我国海军监测到一批可疑快艇正快速向护航的船队靠近.为保证船队安全,我国海军迅速派出甲、乙两架直升机分别从相距20海里的船队首(O点)尾(A点)前去拦截,4分钟后同时到达B点将可疑快艇驱离.已知甲直升机每小时飞行180海里,航向为北偏东25°,乙直升机的航向为北偏西65°,求乙直升机的飞行速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在RI△ABC中,∠C=90°,AC=BC=4cm,点P从点A出发沿线段AB以cm/s的速度向点B运动,设运动时间为ts.过点P作PD⊥AB,PD与△ABC的腰相交于点D.
(1)当t=(4-2)s时,求证:△BCD≌△BPD;
(2)当t为何值时,S△APD=3S△BPD,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
(1)求每辆A,B两种自行车的进价分别是多少?
(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com