【题目】如图,在同一个平面内,,
.
(1)填空:________;
(2)如果OD平分,OE平分
,那么
的度数为;
(3)试问在(2)的条件下,如果将题目中改为
,其他条件不变,你能求出
的度数吗?若能,请你写出求解过程;若不能,请说明理由.
【答案】(1)150°(2)45°(3)45°
【解析】
(1)直接根据已知利用∠BOC=∠AOB+∠AOC求出即可;
(2)利用角平分线的性质和(1)中所求得出答案即可;
(3)根据角平分线的性质∠DOC=∠BOC=45°+α,∠COE=
∠AOC=α,进而求出即可.
(1)∵∠AOB=90°,∠AOC=60°,
∴∠BOC=∠AOB+∠AOC=90°+60°=150°
故答案为:150°;
(2)∵OD平分∠BOC,OE平分∠AOC,
∴∠COD=∠BOC=75°,∠COE=
∠AOC=30°,
∴∠DOE的度数为:∠COD∠COE=45°;
故答案为:45°;
(3)∵∠AOB=90°,∠AOC=2α,
∴∠BOC=90°+2α,
∵OD、OE平分∠BOC,∠AOC,
∴∠DOC=∠BOC=45°+α,∠COE=
∠AOC=α,
∴∠DOE=∠DOC∠COE=45°.
科目:初中数学 来源: 题型:
【题目】已知直线AB∥CD.
(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是 .
(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+)(x>0).
【探索研究】
小彬借鉴以前研究函数的经验,先探索函数y=x+的图象性质.
(1)结合问题情境,函数y=x+的自变量x的取值范围是x>0,下表是y与x的几组对应值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①写出m的值;
②画出该函数图象,结合图象,得出当x= 时,y有最小值,y最小= ;
提示:在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.试用配方法求函数y=x+(x>0)的最小值,解决问题(2)
【解决问题】
(2)直接写出“问题情境”中问题的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:
根据以上图表信息,解答下列问题:
(1)表中的a= ,c= ;
(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)
(3)若该校九年级共有500名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,其中,
,
的值分别为( )
表一
… | ||||
… | ||||
… | ||||
… | ||||
… | … | … | … | … |
表二
表三
表四
A.,
,
B.
,
,
C.
,
,
D.
,
,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装厂生产一种西装和领带,西装每套定价元,领带每条定价
元,厂方在开展促销活动期间,向客户提供两种优惠方案:
①买一套西装送一条领带;
②西装和领带都按定价的付款.
现某客户要到该服装厂购买西装套,领带
条(
).
(1)客户分别按方案①、方案②购买,各需付款多少元?(用含的代数式表示);
(2)若,通过计算说明此时按哪种方案购买较为合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为
米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com